Home Gas phase synthesis of 4d transition metal carbonyl complexes with thermalized fission fragments in single-atom reactions
Article
Licensed
Unlicensed Requires Authentication

Gas phase synthesis of 4d transition metal carbonyl complexes with thermalized fission fragments in single-atom reactions

  • Michael Götz EMAIL logo , Stefan Götz , Jens-Volker Kratz , Jochen Ballof , Christoph E. Düllmann , Klaus Eberhardt , Christoph Mokry , Dennis Renisch , Jörg Runke , Tetsuya K. Sato , Petra Thörle-Pospiech , Norbert Trautmann and Alexander Yakushev
Published/Copyright: January 25, 2021

Abstract

The formation of carbonyl complexes using atom-at-a-time quantities of short-lived transition metals from fusion and fission reactions was reported in 2012. Numerous studies focussing on this chemical system, which is also applicable for the superheavy elements followed. We report on a novel two-chamber approach for the synthesis of such complexes that allows spatial decoupling of thermalization and gas-phase carbonyl complex synthesis. Neutron induced fission on 235U and spontaneous fission of 248Cm were employed for the production of the fission products. These were stopped inside a gas volume behind the target and flushed with an inert-gas flow into a second chamber. This was flushed with carbon monoxide to allow the gas-phase synthesis of carbonyl complexes. Parameter studies of the transfer from the first into the second chamber as well as on the carbonyl complex formation and transport processes have been performed. High overall efficiencies of more than 50% were reached rendering this approach interesting for studies of superheavy elements. Our results show that carbonyl complex formation of thermalized fission products is a single-atom reaction, and not a hot-atom reaction.


Corresponding author: Michael Götz, Department of Chemistry – TRIGA Site, Johannes Gutenberg University Mainz, 55099Mainz, DE, Germany; GSI Helmholtz Centre for Heavy Ion Research, 64291Darmstadt, DE, Germany; and Helmholtz Institute Mainz, 55099Mainz, DE, Germany, E-mail:

Funding source: BMBF

Award Identifier / Grant number: 05P15UMFNA

Funding source: Reimei Research Program of Japan Atomic Energy Agency

Funding source: Helmholtz Institute Mainz

Acknowledgment

We thank the staff of the research reactor TRIGA Mainz and the mechanical and electronic workshops at the TRIGA Mainz for their support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: We gratefully acknowledge financial support from the Helmholtz Institute Mainz and the Reimei Research Program of Japan Atomic Energy Agency, as well as the BMBF under contract No. 05P15UMFNA.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Pyykkö, P., Desclaux, J. P. Relativity and the periodic system of elements. Acc. Chem. Res. 1979, 12, 276–281; https://doi.org/10.1021/ar50140a002.Search in Google Scholar

2. Schädel, M. Chemistry of superheavy elements. Angew. Chem. Int. Ed. 2006, 45, 368–401; https://doi.org/10.1002/anie.200461072.Search in Google Scholar PubMed

3. Hoffman, D. C., Lee, D. M. Chemistry of the heaviest elements- one atom at a time. J. Chem. Educ. 1999, 76, 331–347; https://doi.org/10.1021/ed076p331.Search in Google Scholar

4. Schädel, M. The Chemistry of Superheavy Elements; Berlin: Springer, 2007.Search in Google Scholar

5. Türler, A. Advances in chemical investigations of the heaviest elements. In EPJ Web of Conferences; Rudolph, D., Ed., Vol. 131, 2016; p. 07001.10.1051/epjconf/201613107001Search in Google Scholar

6. Schädel, M., Shaughnessy, D. Chemistry of the superheavy elements. Philos. Trans. R. Soc. London, Ser. A 2015, 373, 415–483; https://doi.org/10.1098/rsta.2014.0191.Search in Google Scholar PubMed

7. Vértes, A., Sándor, N., Zoltán, K., Rezső, G. L., Rösch, F. Handbook of Nuclear Chemistry; US: Springer US, 2010; pp. 925–1004.10.1007/978-1-4419-0720-2Search in Google Scholar

8. Baumgärtner, F., Reichold, P. Zur Chemie bei Kernprozessen. Z. Naturforsch., A: Phys. Sci. 1961, 16, 945–948; https://doi.org/10.1515/zna-1961-0919.Search in Google Scholar

9. Even, J., Yakushev, A., Düllmann, Ch. E., Dvorak, J., Eichler, R., Gothe, O., Hild, D., Jäger, E., Khuyagbaatar, J., Kratz, J.-V., Krier, J., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer, D. Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions. Inorg. Chem. 2012, 51, 6431–6433; https://doi.org/10.1021/ic300305m.Search in Google Scholar PubMed

10. Even, J., Yakushev, A., Düllmann, Ch. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Nitto, A. D., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jager, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schadel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Turler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S. Synthesis and detection of a seaborgium carbonyl complex. Science 2014, 345, 1491–1493; https://doi.org/10.1126/science.1255720.Search in Google Scholar PubMed

11. Even, J. Developments for Transactinide Chemistry Experiments Behind the Gas-Filled Separator TASCA. Ph.D. Thesis, Johannes Gutenberg University Mainz, Germany, 2011.Search in Google Scholar

12. Cao, S., Wang, Y., Qin, Z., Fan, F., Haba, H., Komori, Y., Wu, X., Tan, C., Zhang, X. Gas-phase chemistry of ruthenium and rhodium carbonyl complexes. Phys. Chem. Chem. Phys. 2016, 18, 119–125; https://doi.org/10.1039/c5cp05670e.Search in Google Scholar PubMed

13. Wang, Y., Qin, Z., Fan, F.-L., Fan, F.-Y., Cao, S.-W., Wu, X.-L., Zhang, X., Bai, J., Yin, X.-J., Tian, L.-L., Zhao, L., Tian, W., Li, Z., Tan, C.-M., Guo, J.-S., Gäggeler, H. W. Gasphase chemistry of Mo, Ru, W, and Os metal carbonyl complexes. Radiochim. Acta 2014, 102, 69–76; https://doi.org/10.1515/ract-2014-2157.Search in Google Scholar

14. Even, J., Yakushev, A., Düllmann, Ch. E., Dvorak, J., Eichler, R., Gothe, O., Hartmann, W., Hild, D., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Lommel, B., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer, D. In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes. Radiochim. Acta 2014, 102, 1093–1110; https://doi.org/10.1515/ract-2013-2198.Search in Google Scholar

15. Even, J., Ackermann, D., Asai, M., Block, M., Brand, H., Nitto, A. D., Düllmann, Ch. E., Eichler, R., Fan, F., Haba, H., Hartmann, W., Hübner, A., Hessberger, F. P., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J.-V., Krier, J., Kudou, Y., Kurz, N., Laatiaoui, M., Lommel, B., Maurer, J., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Sato, T. K., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yakushev, A., Yamaki, S. In situ synthesis of volatile carbonyl complexes with short-lived nuclides. J. Radioanal. Nucl. Chem. 2014, 303, 2457–2466.10.1007/s10967-014-3793-7Search in Google Scholar

16. Usoltsev, I. Methodical Developments for Future Chemical Investigations of Superheavy Elements. Ph.D. Thesis, Departement für Chemie und Biochemie der Universität Bern, Switzerland, 2014.Search in Google Scholar

17. Wang, Y., Cao, S., Zhang, J., Fan, F., Yang, J., Haba, H., Komori, Y., Yokokita, T., Morimoto, K., Kaji, D., Wittwer, Y., Eichler, R., Türler, A., Qin, Z. The study of rhenium pentacarbonyl complexes using singleatom chemistry in the gas phase. Phys. Chem. Chem. Phys. 2019, 21, 7147–7154; https://doi.org/10.1039/c8cp07844k.Search in Google Scholar PubMed

18. Usoltsev, I., Eichler, R., Wang, Y., Even, J., Yakushev, A., Haba, H., Asai, M., Brand, H., Nitto, A. D., Düllmann, Ch. E., Fangli, F., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Sato, T., Schädel, M., Steiner, J., Steinegger, P., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Wakabayashi, Y., Wiehl, N., Yamaki, S., Qin, Z. Decomposition studies of group 6 hexacarbonyl complexes. Part 1: production and decomposition of Mo(CO)6 and W(CO)6. Radiochim. Acta 2016, 104, 141–151; https://doi.org/10.1515/ract-2015-2445.Search in Google Scholar

19. Usoltsev, I., Eichler, R., Türler, A. Decomposition studies of group 6 hexacarbonyl complexes. Part 2: modelling of the decomposition process. Radiochim. Acta 2016, 104, 531–537; https://doi.org/10.1515/ract-2015-2447.Search in Google Scholar

20. Düllmann, Ch. E., Folden, C., Gregorich, K., Hoffman, D., Leitner, D., Pang, G., Sudowe, R., Zielinski, P., Nitsche, H. Heavy-ion-induced production and physical preseparation of short-lived isotopes for chemistry experiments. Nucl. Instrum. Methods Phys. Res., Sect. A 2005, 551, 528–539; https://doi.org/10.1016/j.nima.2005.05.077.Search in Google Scholar

21. Haba, H., Kaji, D., Kudou, Y., Morimoto, K., Morita, K., Ozeki, K., Sakai, R., Sumita, T., Yoneda, A., Kasamatsu, Y., Komori, Y., Shinohara, A., Kikunaga, H., Kudo, H., Nishio, K., Ooe, K., Sato, N., Tsukada, K. Production of 265 Sg in the 248 Cm(22 Ne,5n)265 Sg reaction and decay properties of two isomeric states in 265 Sg. Phys. Rev. C 2012, 85, 024611-1–024611-11; https://doi.org/10.1103/physrevc.85.024611.Search in Google Scholar

22. Morita, K., Morimoto, K., Kaji, D., Haba, H., Ozeki, K., Kudou, Y., Sato, N., Sumita, T., Yoneda, A., Ichikawa, T., Fujimori, Y., Goto, S., Ideguchi, E., Kasamatsu, Y., Katori, K., Komori, Y., Koura, H., Kudo, H., Ooe, K., Ozawa, A., Tokanai, F., Tsukada, K., Yamaguchi, T. & Yoshida, A. Decay properties of 266 Bh and 262 Db produced in the 248 Cm + 23 Na reaction. J. Phys. Soc. Jpn. 2009, 78, 064201-1–064201-6; https://doi.org/10.1143/jpsj.78.064201.Search in Google Scholar

23. Morita, K., Morimoto, K., Kaji, D., Haba, H., Ozeki, K., Kudou, Y., Sato, N., Sumita, T., Yoneda, A., Ichikawa, T., Fujimori, Y., Goto, S., Ideguchi, E., Kasamatsu, Y., Katori, K., Komori, Y., Koura, H., Kudo, H., Ooe, K., Ozawa, A., Tokanai, F., Tsukada, K., Yamaguchi, T., Yoshida, A., Susa, H., Arnould, M., Gales, S., Motobayashi, T., Scheidenberger, C., Utsunomiya, H. Decay properties of 266 Bh and 262 Db produced in the 248 Cm + 23 Na reaction: AIP: Kobe, Japan, 1238, 2010; pp. 331–336.Search in Google Scholar

24. Wilk, P. A., Gregorich, K. E., Türler, A., Laue, C. A., Eichler, R., Ninov, V., Adams, J. L., Kirbach, U. W., Lane, M. R., Lee, D. M., Patin, J. B., Shaughnessy, D. A., Strellis, D. A., Nitsche, H., Hoffman, D. C. Evidence for new isotopes of element 107: 266 Bh and 267 Bh. Phys. Rev. Lett. 2000, 85, 2697–2700; https://doi.org/10.1103/physrevlett.85.2697.Search in Google Scholar PubMed

25. Dvorak, J., Brüchle, W., Chelnokov, M., Düllmann, Ch. E., Dvorakova, Z., Eberhardt, K., Jäger, E., Krücken, R., Kuznetsov, A., Nagame, Y., Nebel, F., Nishio, K., Perego, R., Qin, Z., Schädel, M., Schausten, B., Schimpf, E., Schuber, R., Semchenkov, A., Thörle, P., Türler, A., Wegrzecki, M., Wierczinski, B., Yakushev, A., Yeremin, A. Observation of the 3n evaporation channel in the complete hot-fusion 26Mg + 248Cm leading to the new superheavy 271Hs. Phys. Rev. Lett. 2008, 100, 132503–1–132503–4; https://doi.org/10.1103/physrevlett.100.132503.Search in Google Scholar

26. Oganessian, Y. T., Utyonkov, V. K., Abdullin, F. S., Dmitriev, S. N., Graeger, R., Henderson, R. A., Itkis, M. G., Lobanov, Y. V., Mezentsev, A. N., Moody, K. J., Nelson, S. L., Polyakov, A. N., Ryabinin, M. A., Sagaidak, R. N., Shaughnessy, D. A., Shirokovsky, I. V., Stoyer, M. A., Stoyer, N. J., Subbotin, V. G., Subotic, K., Sukhov, A. M., Tsyganov, Y. S., Türler, A., Voinov, A. A., Vostokin, G. K., Wilk, P. A., Yakushev, A. Synthesis and study of decay properties of the doubly magic nucleus 270Hs in the 226Ra + 48Ca reaction. Phys. Rev. C 2013, 87, 034605-1–034605-8; https://doi.org/10.1103/physrevc.87.034605.Search in Google Scholar

27. Zvára, I., Chuburkov, Y., Belov, V., Buklanov, G., Zakhvataev, B., Zvarova, T., Maslov, O., Caletka, R., Shalaevsky, M. Experiments on chemistry of element 104-kurchatovium-V: adsorption of kurchatovium chloride from the gas stream on surfaces of glass and potassium chloride. J. Inorg. Nucl. Chem. 1970, 32, 1885–1894; https://doi.org/10.1016/0022-1902(70)80598-x.Search in Google Scholar

28. Zvára, I., Yakushev, A. B., Timokhin, S. N., Honggui, X., Perelygin, V. P., Chuburkov, Y. T. Chemical identification of element 106 (thermochromatography of oxochlorides). Radiochim. Acta 1998, 81; https://doi.org/10.1524/ract.1998.81.4.179.Search in Google Scholar

29. Zvára, I., Belov, V., Chelnokov, L., Domanov, V., Hussonois, M., Korotkin, Y., Schegolev, V., Shalayevsky, M. Chemical separation of kurchatovium. Inorg. Nucl. Chem. Lett. 1971, 7, 1109–1116; https://doi.org/10.1016/0020-1650(71)80102-2.Search in Google Scholar

30. Eberhardt, K., Geppert, C. The research reactor TRIGA Mainz – a strong and versatile neutron source for science and education. Radiochim. Acta 2019, 107, 535–546; https://doi.org/10.1515/ract-2019-3127.Search in Google Scholar

31. Parker, W., Falk, R. Molecular plating: a method for the electrolytic formation of thin inorganic films. Nucl. Instrum. Methods 1962, 16, 355–357; https://doi.org/10.1016/0029-554x(62)90142-8.Search in Google Scholar

32. Vascon, A., Santi, S., Isse, A., Reich, T., Drebert, J., Christ, H., Düllmann, Ch. E., Eberhardt, K. Elucidation of constant current density molecular plating. Nucl. Instrum. Methods Phys. Res., Sect. A 2012, 696, 180–191; https://doi.org/10.1016/j.nima.2012.08.072.Search in Google Scholar

33. Wachsmuth, M., Eichler, B., Tobler, L., Hänssler, F., Gäggeler, H. W., Ammann, M. J. Radioanal. Nucl. Chem. 2002, 254, 201–208; https://doi.org/10.1023/a:1020878506388.10.1023/A:1020878506388Search in Google Scholar

34. Chu, S. Y. F., Ekström, L. E., Firestone, R. The Lund/LBNL nuclear data search. http://nucleardata.nuclear.lu.se/toi/.Search in Google Scholar

35. Nucleonica. Fission Yields++. http://www.nucleonica.com/.Search in Google Scholar

36. Wang, Y., Qin, Z., Fan, F., Haba, H., Komori, Y., Cao, S., Wu, X., Tan, C. Gas-phase chemistry of technetium carbonyl complexes. Phys. Chem. Chem. Phys. 2015, 17, 13228–13234; https://doi.org/10.1039/c5cp00979k.Search in Google Scholar PubMed

37. Zvára, I. The Inorganic Radiochemistry of Heavy Elements; Springer Verlag GmbH: Heidelberg, 2008.10.1007/978-1-4020-6602-3Search in Google Scholar

38. Elschenbroich, C. Organometallchemie; Teubner B.G. GmbH: Wiesbaden, Germany, 2008; pp. 330–351.Search in Google Scholar

39. Ziegler, J. Computer code SRIM-2010 2018. http://www.srim.org/.Search in Google Scholar

40. Zhao, Y., Nakahara, H., Sueki, K., Nagame, Y., Nishinaka, I., Eds. New Formulas for TKE Release in Nuclear Fission Process Proceedings of the 1999 Symposium on Nuclear Data; Fukahori, Tokio: JAERI-Conf-2000-005, 2000).Search in Google Scholar

41. Wittwer, D., Abdullin, F., Aksenov, N., Albin, Y., Bozhikov, G., Dmitriev, S., Dressler, R., Eichler, R., Gäggeler, H., Henderson, R., Hübener, S., Kenneally, J., Lebedev, V., Lobanov, Y., Moody, K., Oganessian, Y., Petrushkin, O., Polyakov, A., Piguet, D., Rasmussen, P., Sagaidak, R., Serov, A., Shirokovsky, I., Shaughnessy, D., Shishkin, S., Sukhov, A., Stoyer, M., Stoyer, N., Tereshatov, E., Tsyganov, Y., Utyonkov, V., Vostokin, G., Wegrzecki, M., Wilk, P. Gas phase chemical studies ofsuperheavy elements using the Dubna gas-filled recoil separator –stopping range determination. Nucl. Instrum. Methods Phys. Res., Sect. B 2010, 268, 28–35; https://doi.org/10.1016/j.nimb.2009.09.062.Search in Google Scholar

42. Zvára, I. Simulation of thermochromatographic processes by the Monte Carlo method. Radiochim. Acta 1985, 38; https://doi.org/10.1524/ract.1985.38.2.95.Search in Google Scholar

43. Ziegler, J. F. The Stopping and Ranges of Ions in Matter; Pergamon Press: Oxford, United Kingdom, 2013.Search in Google Scholar

44. Chen, N. H., Othmer, D. F. New generalized equation for gas diffusion coefficient. J. Chem. Eng. Data 1962, 7, 37–41; https://doi.org/10.1021/je60012a011.Search in Google Scholar

45. Pershina, V., Iliaš, M. Carbonyl compounds of Tc, Re, and Bh: electronic structure, bonding, and volatility. J. Chem. Phys. 2018, 149, 204306; https://doi.org/10.1063/1.5055066.Search in Google Scholar PubMed

Received: 2020-06-02
Accepted: 2020-12-14
Published Online: 2021-01-25
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0052/html
Scroll to top button