Extraction of tetra- and hexavalent actinide ions from nitric acid solutions using some diglycolamide functionalized calix[4]arenes
-
Rajesh B. Gujar
, Mudassir Iqbal
Abstract
Neptunium is one of the most important minor actinide elements with some of its isotopes having very long half-lives, therefore necessitating its separation from acidic radioactive wastes. Solvent extraction of Np4+ and NpO22+ was studied using three multiple diglycolamide (DGA) extractants with n-propyl, n-octyl and 3-pentyl substituents termed as LI, LII and LIII, respectively, in a mixed diluent of 5% isodecanol and 95% n-dodecane. For comparison purpose, the extraction of Pu4+ and UO22+ was carried out under identical conditions. The extraction efficiency of the ligands for the tetravalent ions followed the trend: LII > LI > LIII, which changed to LIII > LII > LI for the hexavalent ions. While the extraction of the tetravalent ions was reasonably good (ca. 90–98%) with an extremely low (5.0 × 10−5 M) ligand concentration, poor extraction (ca. 5–16%) of the hexavalent ions was seen even with a 20 times higher concentration of the ligand. In general, Pu4+ was better extracted than Np4+, while NpO22+ was marginally better extracted then UO22+. A ‘solvation’ type extraction mechanism was proposed based on the extraction profiles obtained as a function of the concentrations of the feed nitric acid, extractant as well as nitrate ion. The extracted species were found out to be M(NO3)4·mL and MO2(NO3)2·nL (M = Np or Pu, 1 < m < 2, n ≃ 1).
Acknowledgments
The authors (RBG, PKV and PKM) thank Dr. P.K. Pujari, Head, Radiochemistry Division, Bhabha Atomic Research Centre for his constant encouragement.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Supporting information: Purification radiotracers.
References
1. Choppin, G. R., Morgenstern, A. Radionuclide separations in radioactive waste disposal. J. Radioanal. Nucl. Chem. 2000, 243, 45; https://doi.org/10.1023/a:1006754927614.10.1023/A:1006754927614Suche in Google Scholar
2. Madic, C., Hudson, M. J., Liljenzin, J. O., Glatz, J.-P., Nannicini, R., Facchini, A., Kolarik, Z., Odoj, Z. R. New Partitioning Techniques for Minor Actinides. EUR 19149; European Commission: Luxembourg, 2000.Suche in Google Scholar
3. Ansari, S. A., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K. Aqueous partitioning of minor actinides by different processes. Separ. Purif. Rev. 2011, 40, 43; https://doi.org/10.1080/15422119.2010.545466.Suche in Google Scholar
4. Mathur, J. N., Murali, M. S., Nash, K. L. Actinide partitioning – a review. Solvent Extr. Ion Exch. 2001, 19, 357; https://doi.org/10.1081/sei-100103276.Suche in Google Scholar
5. Boldeman, J. W. Accelerator driven nuclear energy systems, Australian Academy of Technological Sciences and Engineering Symposium, Energy for ever – technological challenges of sustainable growth (November 1997) future nuclear energy systems: generating electricity, burning wastes, Viktor Arkhipov, IAEA Bull., 39, 1997, 30.Suche in Google Scholar
6. Chamberlain, D. B., Conner, C., Hutter, J. C., Leonard, R. A., Wygmans, D. G., Vandegrift, G. F. TRUEX processing of plutonium solutions at Argonne National laboratory. Separ. Sci. Technol. 1997, 32, 303; https://doi.org/10.1080/01496399708003201.Suche in Google Scholar
7. Morita, Y., Kubota, M. Research and development on the partitioning process at JAERI. J. Nucl. Sci. Technol. 1987, 24, 227; https://doi.org/10.1080/18811248.1987.9735797.Suche in Google Scholar
8. Zhu, Y., Jiao, R. Chinese experience in the removal of actinides from high active waste by trialkyl phosphine oxide extraction. Nucl. Technol. 1994, 108, 361; https://doi.org/10.13182/nt94-a35018.Suche in Google Scholar
9. Modolo, G., Vijgen, H., Purroy, D., Christiansen, B., Malmbeck, R. DIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrate. Separ. Sci. Technol. 2007, 42, 439; https://doi.org/10.1080/01496390601120763.Suche in Google Scholar
10. Ansari, S. A., Pathak, P. N., Mohapatra, P. K., Manchanda, V. K. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751; https://doi.org/10.1021/cr200002f.Suche in Google Scholar PubMed
11. Zhu, Z., Sasaki, Y., Suzuki, H., Suzuki, S., Kimura, T. Cumulative study on solvent extraction of elements by N,N,N′,N′-tetraoctyl-3-oxapentanediamide (TODGA) from nitric acid into n-dodecane. Anal. Chim. Acta 2004, 527, 163; https://doi.org/10.1016/j.aca.2004.09.023.Suche in Google Scholar
12. Sasaki, Y., Sugo, Y., Suzuki, S., Kimura, T. A method for the determination of extraction capacity and its application to N,N,N′,N′-tetraalkyl derivatives of diglycolamide-monoamide/n-dodecane media. Anal. Chim. Acta 2005, 543, 31; https://doi.org/10.1016/j.aca.2005.04.061.Suche in Google Scholar
13. Ansari, S. A., Pathak, P. N., Husain, M., Prasad, A. K., Parmar, V. S., Manchanda, V. K. N,N,N′,N′-tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Solvent Extr. Ion Exch. 2005, 23, 463; https://doi.org/10.1081/sei-200066296.Suche in Google Scholar
14. Gujar, R. B., Ansari, S. A., Murali, M. S., Mohapatra, P. K., Manchanda, V. K. Comparative evaluation of two substituted diglycolamide extractants for ‘actinide partitioning’. J. Radioanal. Nucl. Chem. 2010, 284, 377; https://doi.org/10.1007/s10967-010-0467-y.Suche in Google Scholar
15. Sharma, J. N., Ruhela, R., Harindaran, K. N., Mishra, S. K., Tangri, S. L., Suri, A. K. Separation studies of uranium and thorium using tetra(2-ethylhexyl) diglycolamide (T2EHDGA) as an extractant. J. Radioanal. Nucl. Chem. 2008, 278, 173; https://doi.org/10.1007/s10967-007-7238-4.Suche in Google Scholar
16. Gujar, R. B., Ansari, S. A., Mohapatra, P. K., Manchanda, V. K. Development of T2EHDGA based process for actinide partitioning. Part I: batch studies for process optimization. Solvent Extr. Ion Exch. 2010, 28, 350; https://doi.org/10.1080/07366291003685383.Suche in Google Scholar
17. Magnusson, D., Christiansen, B., Glatz, J.-P., Malmbeck, R., Modolo, G., Purroy, D., Sorel, C. Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate. Part III: centrifugal contactor run using genuine fuel solution. Solvent Extr. Ion Exch. 2009, 27, 26; https://doi.org/10.1080/07366290802544726.Suche in Google Scholar
18. Heres, X., Sorel, C., Miguirditchian, M., Cames, B., Hill, C., Bisel, I., Espinoux, D., Eysseric, C., Baron, P., Lorrain, B. Results of recent counter-current tests on An(III)/Ln(III) separation using TODGA extractant. In Proceedings of Global 2009, Paris, France, September 6–11, 2009. Paper no. 9384.Suche in Google Scholar
19. Gujar, R. B., Ansari, S. A., Prabhu, D. R., Pathak, P. N., Sengupta, A., Thulasidas, S. K., Mohapatra, P. K., Manchanda, V. K. Actinide partitioning with a modified TODGA solvent: counter-current extraction studies with simulated high level waste. Solvent Extr. Ion Exch. 2012, 30, 156; https://doi.org/10.1080/07366299.2011.609392.Suche in Google Scholar
20. Ansari, S. A., Gujar, R. B., Prabhu, D. R., Pathak, P. N., Mohapatra, P. K. Comparative evaluation of CMPO and diglycolamide based solvent systems for actinide partitioning in mixer-settler runs using tracer-spiked PHWR simulated high level waste. Solvent Extr. Ion Exch. 2014, 32, 44; https://doi.org/10.1080/07366299.2013.833743.Suche in Google Scholar
21. Sasaki, Y., Sugo, Y., Suzuki, S., Tachimori, S. The novel extractants diglycolamides for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solvent Extr. Ion Exch. 2001, 19, 91; https://doi.org/10.1081/sei-100001376.Suche in Google Scholar
22. Jensen, M. P., Yaita, T., Chiarizia, R. Reverse-micelle formation in the partitioning of trivalent f-element cations by biphasic systems containing a tetraalkyl diglycolamide. Langmuir 2007, 23, 4765; https://doi.org/10.1021/la0631926.Suche in Google Scholar PubMed
23. Pathak, P. N., Ansari, S. A., Kumar, S., Tomar, B. S., Manchanda, V. K. Dynamic light scattering study on the aggregation behavior of N,N,N′,N′-tetraoctyl diglycolamide (TODGA) and its correlation with the extraction behavior of metal ions. J. Colloid Interface Sci. 2010, 342, 114; https://doi.org/10.1016/j.jcis.2009.10.015.Suche in Google Scholar PubMed
24. Iqbal, M., Mohapatra, P. K., Ansari, S. A., Huskens, J., Verboom, W. Preorganization of diglycolamides on the calix[4]arene platform and its effect on the extraction of Am(III)/Eu(III). Tetrahedron 2012, 68, 7840; https://doi.org/10.1016/j.tet.2012.07.036.Suche in Google Scholar
25. Kolarik, Z., Dressler, P. Extraction and coextraction of Tc(VII), Zr(IV), Np(IV.VI), Pa(V) and Nb(V) with tributyl phosphate from nitric acid solutions. Solvent Extr. Ion Exch. 1989, 7, 625; https://doi.org/10.1080/07360298908962328.Suche in Google Scholar
26. Shabana, R., Ruf, H. Extraction and separation of neptunium, uranium, thorium and cerium with TOPO from mixed solvents. Radiochim. Acta 1976, 23, 117; https://doi.org/10.1524/ract.1976.23.34.117.Suche in Google Scholar
27. Wisnubroto, D. S., Ikeda, H., Suzuki, A. Solvent extraction of pentavalent neptunium with n-octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide. J. Nucl. Sci. Technol. 1991, 28, 1100; https://doi.org/10.1080/18811248.1991.9731476.Suche in Google Scholar
28. Malmbeck, R., Courson, O., Pagliosa, G., Römer, K., Sätmark, B., Glatz, J.-P., Baron, P. Partitioning of minor actinides from HLLW using the DIAMEX process. Part 2 - “hot” continuous counter-current experiment. Radiochim. Acta 2000, 88, 865; https://doi.org/10.1524/ract.2000.88.12.865.Suche in Google Scholar
29. Carrot, M. J., Gregson, C. R., Taylor, R. J. Neptunium extraction and stability in the GANEX solvent: 0.2 M TODGA/0.5 M DMDOHEMA/kerosene. Solvent Extr. Ion Exch. 2013, 31, 463; https://doi.org/10.1080/07366299.2012.735559.Suche in Google Scholar
30. Mohapatra, P. K., Ruikar, P. B., Manchanda, V. K. Separation of neptunium and plutonium from acidic medium using 3-phenyl-4-benzoyl-5-isoxazolone. Radiochim. Acta 2002, 90, 323; https://doi.org/10.1524/ract.2002.90.6.323.Suche in Google Scholar
31. Slatis, H. β- and γ-Radiation from 239U and 239Np. Nature 1947, 160, 579; https://doi.org/10.1038/160579a0.Suche in Google Scholar PubMed
32. Shannon, R. D. Revised effective ionic radii and systematic studies of inter atomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar
33. Sood, D. D., Patil, S. K. Chemistry of nuclear fuel reprocessing: current status. J. Radioanal. Nucl. Chem. 1996, 203, 547; https://doi.org/10.1007/bf02041529.Suche in Google Scholar
34. Mohapatra, P. K., Iqbal, M., Raut, D. R., Verboom, W., Huskens, J., Godbole, S. V. Complexation of novel diglycolamide functionalized calix[4]arenes: unusual extraction behaviour, transport, and fluorescence studies. Dalton Trans. 2012, 41, 360; https://doi.org/10.1039/c1dt11561h.Suche in Google Scholar PubMed
35. Gujar, R. B., Dhekane, G. D., Mohapatra, P. K. Liquid–liquid extraction of Np4+ and Pu4+ using several tetra-alkyl substituted diglycolamides. Radiochim. Acta 2013, 101, 719; https://doi.org/10.1524/ract.2013.2072.Suche in Google Scholar
36. Gujar, R. B., Pathak, P. N., Dhekane, G. B., Mohapatra, P. K. Extraction of some hexavalent actinide ions from nitric acid medium using substituted diglycolamides. Solvent Extr. Ion Exch. 2014, 32, 637; https://doi.org/10.1080/07366299.2014.926136.Suche in Google Scholar
37. Ansari, S. A., Bhattacharyya, A., Mohapatra, P. K., Egberink, R. J. M., Huskens, J., Verboom, W. Evaluation of two aza-crown ether-based multiple diglycolamide-containing ligands for complexation with the tetravalent actinide ions Np4+ and Pu4+: extraction and DFT studies. RSC Adv. 2019, 9, 31928; https://doi.org/10.1039/c9ra05977f.Suche in Google Scholar PubMed PubMed Central
38. Gujar, R. B., Mohapatra, P. K., Verboom, W. Extraction of Np4+ and Pu4+ from nitric acid feeds using three types of tripodal diglycolamide ligands. Separ. Purif. Technol. 2020, 247, 116986; https://doi.org/10.1016/j.seppur.2020.116986.Suche in Google Scholar
39. Mohapatra, P. K., Sengupta, A., Iqbal, M., Huskens, J., Verboom, W. Diglycolamide-functionalized calix[4]arenes showing unusual complexation of actinide ions in room temperature ionic liquids: role of ligand structure, radiolytic stability, emission spectroscopy, and thermodynamic studies. Inorg. Chem. 2013, 52, 2533; https://doi.org/10.1021/ic302497k.Suche in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2020-0100).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Gas phase synthesis of 4d transition metal carbonyl complexes with thermalized fission fragments in single-atom reactions
- Extraction of tetra- and hexavalent actinide ions from nitric acid solutions using some diglycolamide functionalized calix[4]arenes
- Uranyl oxalate species in high ionic strength environments: stability constants for aqueous and solid uranyl oxalate complexes
- Comparative study on aqueous acid free UO2 dissolution-extraction using DHOA adduct into room temperature ionic liquid/supercritical carbon dioxide/n-hexane
- Determination of trace uranium in thorium matrix by laser induced fluorimetry after separation of thorium by its fluoride precipitation using NH4HF2
- Development of a fast characterization setup for radionuclide generators demonstrated by a 227Ac-based generator
- Purification of 89Sr from FBTR irradiated Yttria target by extraction chromatography using HDEHP impregnated XAD-7 resin
- Microanalysis and signature of rare earth elements in geochemical samples using neutron activation analysis
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Gas phase synthesis of 4d transition metal carbonyl complexes with thermalized fission fragments in single-atom reactions
- Extraction of tetra- and hexavalent actinide ions from nitric acid solutions using some diglycolamide functionalized calix[4]arenes
- Uranyl oxalate species in high ionic strength environments: stability constants for aqueous and solid uranyl oxalate complexes
- Comparative study on aqueous acid free UO2 dissolution-extraction using DHOA adduct into room temperature ionic liquid/supercritical carbon dioxide/n-hexane
- Determination of trace uranium in thorium matrix by laser induced fluorimetry after separation of thorium by its fluoride precipitation using NH4HF2
- Development of a fast characterization setup for radionuclide generators demonstrated by a 227Ac-based generator
- Purification of 89Sr from FBTR irradiated Yttria target by extraction chromatography using HDEHP impregnated XAD-7 resin
- Microanalysis and signature of rare earth elements in geochemical samples using neutron activation analysis