Startseite Alpha track registration and revelation in CR-39 using new etching method for ultratrace alpha radioactivity quantification in solution media
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Alpha track registration and revelation in CR-39 using new etching method for ultratrace alpha radioactivity quantification in solution media

  • Sushma S. Chavan , Amol M. Mhatre , Ashok K. Pandey und Hemlata K. Bagla EMAIL logo
Veröffentlicht/Copyright: 17. Mai 2021

Abstract

A CR-39 based method was developed for measuring the ultra-trace alpha radio activities in aqueous samples having curie levels of γ/β-radio activities. The chemical etching method was optimized to reveal the alpha tracks in CR-39. This new chemical etching method involved the use of a phase transfer catalyst tetraethylammonium bromide which reduced the track revelation induction time without deteriorating the track-etch parameters. The alpha track-etch parameters such as bulk-etch rate, track-etch rate, induction time, and the critical angle of alpha track registration were measured at 60 and 70 °C, with and without using a phase transfer catalyst in the chemical etching for the comparison and optimization. The track registration efficiency of CR-39 in the solution medium was measured using the samples having known alpha activity of mixPu, and value obtained was found to be (4.42 ± 0.12) × 10−4 cm. The registration efficiency value thus obtained was corroborated with the expected efficiency expected from the calculated range of alpha particles in the solution. This CR-39 based method was employed to quantify the alpha activity, as low as 0.2 Bq mL−1, in the aqueous radiopharmaceutical samples having the curie levels of γ/β radio activities.


Corresponding author: Hemlata K. Bagla, Department of Nuclear and Radiochemistry, Kishinchand Chellaram College, Churchgate, Mumbai400 020, India, E-mail:

Acknowledgements

Authors are thankful to Dr. P.K. Pujari, Director, RC& Isotope Group, BARC for his keen interest and encouragement in the present work. We are also sincerely thankful to Babasaheb Ambedkar Research and Training Institute (BARTI) Pune, for the financial support.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was funded by Babasaheb Ambedkar Research and Training Institute (BARTI) India, for the financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Brandt, R. Overall review of the applications of SSNTDs in fission physics. Nucl. Instrum. Methods 1980, 173, 147; https://doi.org/10.1016/0029-554x(80)90580-7.Suche in Google Scholar

2. Price, P. B. Recent applications of nuclear tracks in solids. Radiat. Meas. 2008, 43, S13–S25.10.1016/j.radmeas.2008.04.002Suche in Google Scholar

3. Tretyakova, S. P., Bonetti, R., Golovchenko, A., Guglielmetti, A., Ilic, R., Mazzocchi, C., Mikheev, V., Ogloblin, A., Ponomarenko, V., Shigin, V., Skvar, J. Study of cluster decay of 242Cm using SSNTD. Radiat. Meas. 2001, 34, 241; https://doi.org/10.1016/s1350-4487(01)00159-7.Suche in Google Scholar

4. Durrani, S. A. Nuclear tracks: a success story of the 20th century. Radiat. Meas. 2001, 34, 5; https://doi.org/10.1016/s1350-4487(01)00112-3.Suche in Google Scholar

5. Iyer, R. H., Dwivedi, K. K. Four decades of nuclear tracks Research in India. Radiat. Meas. 2003, 36, 63; https://doi.org/10.1016/S1350-4487(03)00098-2.Suche in Google Scholar

6. Durrani, S. A., Bull, R. K. Solid State Nuclear Track Detection: Principles Methods and Application; Pergamon Press: Oxford, 1987.Suche in Google Scholar

7. Fleischer, R., Price, P. B., Walker, R. M. Nuclear Track in Solids: Principle and Application; University of California Press: Berkeley, 1975.10.1525/9780520320239Suche in Google Scholar

8. Sawant, P. D., Prabhu, S. P., Kalsi, P. C. Application of alpha track registration technique for plutonium estimation in bioassay samples. Appl. Radiat. Isot. 2008, 66, 1945; https://doi.org/10.1016/j.apradiso.2008.05.013.Suche in Google Scholar

9. Bondarenko, O. A., Onishchuk, Yu. N., Berezhnoy, A. V., Aryasov, P. B., Antonyuk, D. Low level measurement of plutonium content in bioassay using SSNTD alpha spectrometry. J. Radioanal. Nucl. Chem. 2000, 243, 555; https://doi.org/10.1023/a:1016079609674.10.1023/A:1016079609674Suche in Google Scholar

10. Love, S. F., Filby, R. H., Glover, S. E., Kathren, R. L., Stuit, D. B. Use of combined alpha spectrometry and fission track analysis for the determination of 240Pu/239Pu ratios in human tissue. J. Radioanal. Nucl. Chem. 1998, 234, 189; https://doi.org/10.1007/bf02389770.Suche in Google Scholar

11. Moorthy, A. R., Schopfer, C. J., Banerjee, S. Plutonium from atmospheric weapons testing fission track analysis of urine samples. Anal. Chem. 1988, 60, 857A; https://doi.org/10.1021/ac00165a743.Suche in Google Scholar

12. Agarwal, C., Kalsi, P. C., Prabhu, D. R., Pathak, P. N., Manchanda, V. K. Gross alpha-activity estimation in simulated high-level waste after actinides partitioning by solid state nuclear track detection. J. Radioanal. Nucl. Chem. 2011, 287, 749; https://doi.org/10.1007/s10967-010-0817-9.Suche in Google Scholar

13. Joshirao, P. M., Vyas, C. K., Kim, T., Kalsi, P. C., Manchanda, V. K. Determination of alpha activity in organic solvents using CR-39. Appl. Radiat. Isot. 2013, 78, 68; https://doi.org/10.1016/j.apradiso.2013.04.013.Suche in Google Scholar

14. Zorri, V., Remetti, R., Capogni, M., Cotellessa, G., Falcone, R. Feasibility study on the application of Solid State Tracks Detectors for fast surveys of residual alpha contamination in decommissioning activities. Radiat. Meas. 2017, 107, 111; https://doi.org/10.1016/j.radmeas.2017.09.004.Suche in Google Scholar

15. Kalsi, P. C., Sawant, P. D., Ramaswami, A., Manchanda, V. K. Track etching characteristics of polymer track detector and its application to uranium estimation in seawater samples. J. Radioanal. Nucl. Chem. 2007, 273, 473; https://doi.org/10.1007/s10967-007-6845-4.Suche in Google Scholar

16. Mhatre, A. M., Kalsi, P. C., Choudhary, O. S., Sachdev, G. P. Study of gamma irradiation effects on the etching and optical properties of CR-39 solid state nuclear track detector and its application to uranium assay in soil samples. J. Radioanal. Nucl. Chem. 2011, 288, 795; https://doi.org/10.1007/s10967-011-0993-2.Suche in Google Scholar

17. Boulyga, S. F., Kievitskaja, A. I., Kievets, M. K., Lomonosova, E. M., Zhuk, I. V., Yaroshevich, O. I., Perelygin, V. P., Petrova, R., Brandt, R., Vater, P. Nuclear track radiography of ‘hot’ aerosol particles. Radiat. Meas. 1999, 31, 191; https://doi.org/10.1016/s1350-4487(99)00085-2.Suche in Google Scholar

18. Iyer, R. H., Chaudhuri, N. K. Development of the track registration technique in solid state nuclear track detectors from solution media and its applications. Radiat. Meas. 1997, 27, 529; https://doi.org/10.1016/s1350-4487(97)00010-3.Suche in Google Scholar

19. Uma, V., Srivastava, B. K., Chaudhuri, N. K., Iyer, R. H. Nuclear track registration from solution media: alpha track registration in solid state track detectors in solutions of actinides. Nucl. Instrum. Methods 1980, 171, 75; https://doi.org/10.1016/0029-554x(80)90012-9.Suche in Google Scholar

20. Nikezic, D., Yu, K. N. Formation and growth of tracks in nuclear track materials. Mater. Sci. Eng. 2004, R46, 51–123; https://doi.org/10.1016/j.mser.2004.07.003.Suche in Google Scholar

21. Ho, J. P. Y., Yip, C. W. Y., Nikezic, D., Yu, K. N. Effects of stirring on the bulk etch rate of CR-39 detector. Radiat. Meas. 2003, 36, 141–143; https://doi.org/10.1016/s1350-4487(03)00111-2.Suche in Google Scholar

22. Rana, M. A. CR-39 nuclear track detector: an experimental guide. Nucl. Instrum. Methods Phys. Res. 2018, A 910, 121–126; https://doi.org/10.1016/j.nima.2018.08.077.Suche in Google Scholar

23. Tahiri, I. A., Subhani, M. S. Molten Ba(OH)2·8H2O as an etchant for CR-39 detector. Radiat. Meas. 2003, 37, 205; https://doi.org/10.1016/s1350-4487(03)00030-1.Suche in Google Scholar

24. Kobayashi, T., Fujii, M. Effect of various etching solutions on the response of CR-39. Nucl. Tracks Radiat. Meas. 1988, 15, 175; https://doi.org/10.1016/1359-0189(88)90125-2.Suche in Google Scholar

25. Jaleh, B., Nasri, A., Shahbazi, N., Nikfarjad, H. Surface properties of UV irradiated CR-39 polymer before and after chemical etching and registration of fingerprints on CR-39. Radiat. Meas. 2017, 101, 22; https://doi.org/10.1016/j.radmeas.2017.04.020.Suche in Google Scholar

26. Pandey, A. K., Kalsi, P. C., Iyer, R. H. Effects of high intensity ultrasound in chemical etching of particle tracks in solid state nuclear track detectors. Nucl. Instrum. Methods Phys. Res. 1998, B134, 393; https://doi.org/10.1016/s0168-583x(97)00735-0.Suche in Google Scholar

27. Al-Nia’emi, S. H. S. Effects of ultrasound in etching and detecting parameters of CR-39 detector. Jordan J. Phys. 2014, 7, 35.Suche in Google Scholar

28. Kadhum, N. F., Jebur, L. A., Ridha, A. A. Studying different etching methods using CR-39 nuclear track detector. Detection 2016, 4, 45; https://doi.org/10.4236/detection.2016.43007.Suche in Google Scholar

29. Tripathy, S. P., Kolekar, R. V., Sunil, C., Sarkar, P. K., Dwivedi, K. K., Sharma, D. N. Microwave-induced chemical etching (MCE): a fast etching technique for the solid polymeric track detectors (SPTD). Nucl. Instrum. Methods Phys. Res. 2010, A612, 421.10.1016/j.nima.2009.10.096Suche in Google Scholar

30. Sahoo, G. S., Tripathy, S. P., Joshi, D. S., Kulkarni, M. S. Microwave induced chemical etching of CR-39 with KOH etchant: comparison with chemical etching. Nucl. Instrum. Methods Phys. Res. 2019, A 935, 143; https://doi.org/10.1016/j.nima.2019.05.010.Suche in Google Scholar

31. Joshirao, P. M., Vyas, C. K., Eappen, K. P., Won, J., Hong, S., Manchanda, V. K. Tetraethyl ammonium hydroxide (TEAH) as etchant of CR-39 for the determination of fluence of alpha particles. Nucl. Instrum. Methods Phys. Res. 2014, B325, 47; https://doi.org/10.1016/j.nimb.2014.02.001.Suche in Google Scholar

32. Chavan, V., Kalsi, P. C., Manchanda, V. K. A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD. Nucl. Instrum. Methods Phys. Res. 2011, A 629, 145; https://doi.org/10.1016/j.nima.2010.12.020.Suche in Google Scholar

33. Chavan, V., Agarwal, C., Pandey, A. K., Nair, J. P., Surendran, P., Kalsi, P. C., Goswami, A. Controlled development of pores in polyethylene terepthalate sheet by room temperature chemical etching method. J. Membr. Sci. 2014, 471, 185; https://doi.org/10.1016/j.memsci.2014.07.077.Suche in Google Scholar

34. Chavan, V., Kalsi, P. C., Hong, S. -W., Manchanda, V. K. New chemical etchant for the development of alpha tracks in CR-39 solid state nuclear track detector. Nucl. Instrum. Methods Phys. Res. 2020, B 462, 82; https://doi.org/10.1016/j.nimb.2019.10.033.Suche in Google Scholar

35. Awad, E. M., Rana, M. A. Bulk etch rates of CR-39 nuclear track detectors over a wide range of etchant (NaOH aqueous solution+ ethanol) concentrations: measurements and modeling. Radiat. Eff. Defect Solid, in press.10.1080/10420150.2020.1810038Suche in Google Scholar

36. Tse, K. C. C., Nikezic, D., Yu, K. N. Comparative studies of etching mechanisms of CR-39 in NaOH/H2O and NaOH/ethanol. Nucl. Instrum. Methods Phys. Res. 2007, B 263, 300–305; https://doi.org/10.1016/j.nimb.2007.04.307.Suche in Google Scholar

37. Sohrabi, M., Soltani, Z. Alpha particle energy response of CR-39 detectors by 50 Hz–HV electrochemical etching method. Results Phys. 2017, 7, 69; https://doi.org/10.1016/j.rinp.2016.11.061.Suche in Google Scholar

38. Leonardi, F., Veschetti, M., Tonnarini, S., Cardellini, F., Trevisi, R. A step towards accreditation: a robustness test of etching process. Appl. Radiat. Isot. 2015, 102, 93; https://doi.org/10.1016/j.apradiso.2015.05.002.Suche in Google Scholar

39. Ibrahim, A. A., Yousif, W. H. Effect of etching solution on nuclear track detector CR-39. International. J. Appl. Eng. Res. 2018, 13, 8659.Suche in Google Scholar

40. Khalaf, H. I., Hasan, O. A. Effect of quaternary ammonium salt as a phase transfer catalyst for the microwave depolymerization of polyethylene terephthalate waste bottles. Chem. Eng. J. 2012, 192, 45; https://doi.org/10.1016/j.cej.2012.03.081.Suche in Google Scholar

41. Rana, M. A. Systematic measurements of etch induction time for nuclear tracks: startup of etching and the multiplex effect. Nucl. Instrum. Methods Phys. Res. 2010, A 618, 176–181; https://doi.org/10.1016/j.nima.2010.02.108.Suche in Google Scholar

42. Rana, M. A. On the long-standing question of nuclear track etch induction time: surface-cap model. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 271–276; https://doi.org/10.1016/j.nimb.2007.10.036.Suche in Google Scholar

43. Rana, M. A. CR-39 nuclear track detector: an experimental guide. Nucl. Instrum. Methods Phys. Res. 2018, A 910, 121–126; https://doi.org/10.1016/j.nima.2018.08.077.Suche in Google Scholar

44. Kalsi, P. C. Estimation of track registration efficiency in solution medium and study of gamma irradiation effects on the bulk-etch rate and the activation energy for bulk etching of CR-39 (DOP) solid state nuclear track detector. J. Radioanal. Nucl. Chem. 2011, 287, 581; https://doi.org/10.1007/s10967-010-0785-0.Suche in Google Scholar

45. Ziegler, J. F., Biersack, J. P. Logiciel “SRIM 2000”; Pergamon: New York, 2000.Suche in Google Scholar

46. de Carvalho, H. G., Yagoda, H. The range of alpha-particles in water. Phys. Rev. 1952, 88, 272; https://doi.org/10.1103/physrev.88.273.Suche in Google Scholar

47. Rana, M. A. How to achieve precision and reliability in experiments using nuclear track detection technique? Nucl. Instrum. Methods Phys. Res. 2008, A 592, 354–360; https://doi.org/10.1016/j.nima.2008.04.025.Suche in Google Scholar

Received: 2020-02-26
Accepted: 2021-03-20
Published Online: 2021-05-17
Published in Print: 2021-06-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ract-2020-0010/html
Button zum nach oben scrollen