Startseite 2,4-Dimorpholino-4-yl-6-(4-nitrophenoxy)-[1,3,5] -triazine: Structural and spectroscopic study using experimental and DFT method
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

2,4-Dimorpholino-4-yl-6-(4-nitrophenoxy)-[1,3,5] -triazine: Structural and spectroscopic study using experimental and DFT method

  • R. Kavipriya , Helen P. Kavitha EMAIL logo , B. Karthikeyan , Jasmine P. Vennila , Lydia Rhyman und Ponnadurai Ramasami
Veröffentlicht/Copyright: 20. Januar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

2,4-Dimorpholino-4-yl-6-(4-nitrophenoxy)-[1,3,5]-triazine (DMNT) was synthesized and the molecular structure and vibrational frequencies were studied by density functional theory (DFT) method. The functional used was Becke’s three parameter exchange functional combined with the Lee-Yang-Parr correlation (B3LYP) and the standard basis set was 6-31G(d) for all atoms. The Fourier Transform-Infra Red (FT-IR) and FT-Raman spectra of DMNT were recorded and complete assignments of the observed vibrational frequencies are done. The assignments were confirmed by isotopic labelling. The structural parameters, harmonic vibrational frequencies, IR intensities and Raman intensities of DMNT in the ground-state were also computed. Non-linear optical behaviour of DMNT was analysed by examining the properties like electric dipole moment, polarizability and hyperpolarizability. Molecular properties such as ionization potential, electro-negativity, chemical potential and chemical hardness were obtained from molecular orbital analysis. Hyper conjugative interaction and charge delocalization taking place in DMNT was confirmed by Natural bond analysis studies. UV-Vis spectrum of DMNT was also recorded to understand the electronic properties.

Graphical Abstract:

Acknowledgements

The authors acknowledge the facilities from their respective Universities.

References

[1] Elyakov GB, Stonik VA, Makareva TN. Heterocyclic compounds of marine organisms (Review). Chem Heterocycl Compd. 1977;13:345–59.10.1007/BF00482772Suche in Google Scholar

[2] Newman DJ, Cragg GM. Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod. 2004;67:1216–38.10.1021/np040031ySuche in Google Scholar

[3] Roje S. Bioconversion process for producing nylon-7, nylon-7,7 and polyesters. Photochemistry. 2007;68:1904–21.10.1016/j.phytochem.2007.03.038Suche in Google Scholar

[4] Jain KS, Chitre TS, Miniyar PB, Kathiravan MK, Bendre VS, Veer VS, et al. Biological and medicinal significance of pyrimidines. Curr Sci. 2006;90:793–803.Suche in Google Scholar

[5] Leiningera E, Belousov AB. Recovery of network-driven glutamatergic activity in rat hippocampal neurons during chronic glutamate receptor blockade. Brain Res. 2009;1251:87–102.10.1016/j.brainres.2008.11.044Suche in Google Scholar

[6] Ojha H, Gahlot P, Tiwari AK, Pathak M, Kakkar R. Quantitative structure activityrelationship study of 2, 4, 6-trisubstituted-s-triazine derivatives as antimalarial inhibitors of plasmodium falciparum dihydrofolate reductase. Chem Biol Drug Des. 2011;77:57–62.10.1111/j.1747-0285.2010.01045.xSuche in Google Scholar

[7] Alekseeva NV, Yakhontov LN. Reactions of pyridines, pyrimidines and 1,3,5-triazines with nucleophilic reagents. Russ Chem Rev. 1990;59:514–30.10.1070/RC1990v059n06ABEH003540Suche in Google Scholar

[8] Charushin VN, Chupakhin ON, Van der Plas HC. Reactions of azines with bifunctional nucleophiles: cyclizations and ring transformations. Adv Heterocycl Chem. 1988;43:301–53.10.1016/S0065-2725(08)60256-1Suche in Google Scholar

[9] Loos R, Niessner R. Analysis of atrazine, terbutylazine and their n-dealkylated chloro and hydroxy metabolites by solid-phase extraction and gas chromatography-mass spectrometry and capillary electrophoresis- ultraviolet detection. J Chromatograpr A. 1999;835:217–29.10.1016/S0021-9673(99)00046-1Suche in Google Scholar

[10] Vuddhakul V, Jacobsen NW, Rose SE, Joanoni B, Seow WK, Thong YH. 1-methyl-3-phenyl-1,2,4-triazinium-5-olate: a new zwitterion with cytotoxic activity against human cancer cell-lines. Cancer Lett. 1988;42:29–35.10.1016/0304-3835(88)90235-2Suche in Google Scholar

[11] Hirai K, Sugimoto H, Mizushima T. Jpn Kokai Tokkyo Koho 1986. JP 61134389 A2.Suche in Google Scholar

[12] Bierowska-Charytonowicz D, Konieczny M. Rocz Chem. 1973;47:2199.Suche in Google Scholar

[13] Oettmeier W, Hilip U, Draper W, Fedtke C, Schmidt RR. Pestic Sci. 1991;33:399.10.1002/ps.2780330402Suche in Google Scholar

[14] Kranz E, Santel HJ, Luerssen K, Schmidt RR, Krauskopf B. Ger Offen 1990. DE 3917043 A1.Suche in Google Scholar

[15] Boehner B, Tobler H. Eur Pat Appl 1985. EP 150677.Suche in Google Scholar

[16] Janczak J, Perpetuo GJ. Melaminium glutarate monohydrate. Acta Crystallogr Sect C. 2001;57:1431–3.10.1107/S0108270102007266Suche in Google Scholar

[17] Marchewka MK. Infrared and Raman spectra of melaminium chloride hemihydrate. Mat Sci Eng B. 2002;95:214–21.10.1016/S0921-5107(02)00235-0Suche in Google Scholar

[18] Frisch MJ, Trucks GW, Schlegal HB, Scuseria GE, Robb MA, Cheesman JR, et al. GAUSSIAN 03, Revision A.02. Pittsburg, PA: Gaussian, Inc., 2003.Suche in Google Scholar

[19] Frisch A, Dennington R, Keith T, Milliam J, Nielsen AB, Holder AJ, et al. Gaussview reference, Version 4.0. Pittsburgh: Gaussian Inc., 2007.Suche in Google Scholar

[20] Vennila JP, John Thiruvadigal D, Kavitha HP, Chakkaravathi G, Manivannan V. N-[-2,(3,4-dimethoxyphenyl)ethyl]-nmethylnaphthalene-1-sulfonamide. Acta Cryst E. 2011;67:o2451.10.1107/S1600536811034088Suche in Google Scholar

[21] Arivazhagan M, Meenakshi R. Quantum chemical studies on structure of 1-3-dibromo-5-chlorobenzene. Spectrochim Acta A. 2011;82:316–26.10.1016/j.saa.2011.07.055Suche in Google Scholar

[22] Fogarasi G, Pulay P. Vibrational spectra and structure, vol. 14. Amsterdam: Elsevier, 1985:125–219.Suche in Google Scholar

[23] Pulay P. In: Schalfer HF, editor. Applications of electronic structure theory, modern theoritical chemistry, vol. 4. New York: Springer, 1997:153.Suche in Google Scholar

[24] Nataraj A, Balachandran V, Karthick T. FTIR and Raman spectra, DFT and SQMFF calculations for geometrical interpretation and vibrational analysis of 3-nitro-p-toluic acid. J Mol Struct. 2012;1022:94–108.10.1016/j.molstruc.2012.04.056Suche in Google Scholar

[25] Polavarapu PL. Abinitio vibrational Raman and Raman optical activity spectra. J Phys Chem. 1990;94:8106–12.10.1021/j100384a024Suche in Google Scholar

[26] Keresztury G, Holly S, Varga J, Besenyei GA, Wang Y, Durig JR. Electronic absorption and vibrational spectra and nonlinear optical properties of 4-methoxy-2-nitroaniline. Spectrochim Acta Part. 1993;49A:2007-26.10.1016/S0584-8539(09)91012-1Suche in Google Scholar

[27] Keresztury G. Raman spectroscopy: theory. In: Chalmers JM, Griffiths PR, editors. Hand book of vibrational spectroscopy, vol. 1. Chicester: Wiley, 2002.Suche in Google Scholar

[28] Jamroz MH. Vibrational energy distribution analysis: VEDA 4 Program Warsao. Poland, 2004.Suche in Google Scholar

[29] Meishlich EK, Meislich H, Sharefkin J. 3000 solved problems in organic chemistry, vol. 2. New York: McGraw-Hill, 1993.Suche in Google Scholar

[30] George S. Infrared and Raman characteristic group frequencies-tables and charts, 3rd ed. New York: Wiley, 1993.Suche in Google Scholar

[31] Kovacs A, Keresztury G, Izvekow V. Intramolecular hydrogen bonding in 2-nitrorezorcinol. A combined FT-IR, FT-Raman and computational study. Chem Phys. 2000;253:193–204.10.1016/S0301-0104(99)00390-0Suche in Google Scholar

[32] Rao JM. Organic spectroscopy, principles and applications. New Delhi: Narosa Publishing House, 2000.Suche in Google Scholar

[33] Varsanyi G. Vibrational spectra of benzene derivatives. New York: Academic Press, 1969.10.1016/B978-0-12-714950-9.50007-7Suche in Google Scholar

[34] Socrates G. Infrared characteristic group frequencies. New York: Wiley, 1980.Suche in Google Scholar

[35] Karakurt T, Dincer M, Cukurovali A, Yilmaz I. Ab initio and semi-empirical computational studies on 5-hydroxy4-methyl-5, 6-di-pyridin-2-yl-4, 5-dihydro-2H-[1, 2, 4] triazine-3-thione. J Mol Struct. 2011;991:186–201.10.1016/j.molstruc.2011.02.025Suche in Google Scholar

[36] Silverstein M, Clyyon Basseler G, Morill C. Spectrometric I identification of organic compounds. New York: Wiley, 1981.Suche in Google Scholar

[37] Lin-Vein D, Colthup NB, Fateley WG, Grasseli JG. The hand book of Infrared and Raman characteristic frequencies of organic molecules. San Diego: Academic Press, 1991.Suche in Google Scholar

[38] Subhash Chandrabose S, Saleem H, Erdogdu Y, Rajarajan G, Thanikachalam V. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method. Spectrochim Acta A. 2011;82:260–9.10.1016/j.saa.2011.07.046Suche in Google Scholar PubMed

[39] Arjunan V, Kalaivani M, Marchewka MK, Mohan S. Crystal structure, vibrational and DFT simulation studies of melaminium dihydrogen phosphite monohydrate. J Mol Struct. 2013;1045:160–70.10.1016/j.molstruc.2013.04.026Suche in Google Scholar

[40] Varsanyi G. Assignments of vibrational spectra of seven hundred benzene derivatives, vol. 1-2. London: Adam Hilger, 1974.Suche in Google Scholar

[41] Bellanmy LJ. The infrared spectra of complex molecules. London: Chapman and Hall, 1980.10.1007/978-94-011-6520-4Suche in Google Scholar

[42] Balachandran V, Janaki A, Nataraj A. Theoretical investigations on molecular structure, vibrational spectra, HOMO, LUMO, NBO analysis and hyperpolarizability calculations of thiophene-2-carbohydrazide. Spectrochim Acta A. 2014;118:321–30.10.1016/j.saa.2013.08.091Suche in Google Scholar PubMed

[43] Politzer P, Laurence PR, JayaSuriya K, McKinney J. Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. Environ Health Perspect. 1985;61:191–202.10.1289/ehp.8561191Suche in Google Scholar PubMed PubMed Central

[44] Pegu D. Int J Sci Res. 2012;469–74. ISSN: 2319–7064.Suche in Google Scholar

[45] Reed AE, Weinhold F. Natural localized molecular orbitals. J Chem Phys. 1985;83:1736–40.10.1063/1.449360Suche in Google Scholar

[46] Reed AE, Weinhold RB, Weinhold F. Natural population analysis. J Chem Phys. 1985;83:735–46.10.1063/1.449486Suche in Google Scholar

[47] Reed AE, Wienhold F. Natural bond orbital analysis of near-hartree-fock water dimer. J Chem Phys. 1983;78:4066–73.10.1063/1.445134Suche in Google Scholar

[48] Foster JP, Weinhold F. Natural hybrid orbitals. J Am Chem Soc. 1980;102:7211–8.10.1021/ja00544a007Suche in Google Scholar

[49] Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattraj PK. Chemical reactivity profiles of two-selected poly chlorinated biphenyls. J Phys Chem A. 2008;107:10346–52.10.1021/jp035620bSuche in Google Scholar

[50] Thanikaivelan P, Subramanian V, Raghava Rao J, Nair BV. Application of quantum chemical descriptor in quantitative structure activity and structure property relationship. Chem Phys Lett. 2000;323:59–70.10.1016/S0009-2614(00)00488-7Suche in Google Scholar

[51] Parthasarathi R, Padmanabhan J, Elango M, Subramanian V, Chattraj PK. Intermolecular reactivity through the generalized electrophilicity concept. Chem Phys Lett. 2004;394:225–30.10.1016/j.cplett.2004.07.002Suche in Google Scholar

[52] Parthasarthi R, Padmanabhan J, Subramanian V, Maiti B, Chattraj PK. Toxicity analysis of 33'44'5-pentachloro biphenyl through chemical reactivity and selectivity profiles. Curr Sci. 2004;86:535–42.Suche in Google Scholar

[53] Parthasarthi R, Padmanabhan J, Subramanian V, Sarkar U, Maiti B, Chattraj PK. Toxicity analysis of benzidine through chemical reactivity and selectivity profiles: a DFT approach. Internet Electron J Mol Des. 2003;2:798.Suche in Google Scholar

[54] Parr RG, Yang W. Density functional theory of atoms and molecules. Oxford, New York: Oxford University Press, 1989.Suche in Google Scholar

[55] Pearson RG. Absolute electronegativity and hardness: applications to organic chemistry. J Org Chem. 1989;54:1430–2.10.1021/jo00267a034Suche in Google Scholar

[56] Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc. 1983;105:7512–6.10.1021/ja00364a005Suche in Google Scholar

[57] Geerlings P, De Proft F, Langenaekar W. Conceptual density functional theory. Chem Rev. 2003;103:1793–873.10.1201/9781420065442.ch27Suche in Google Scholar

[58] Singh RN, Kumar A, Tiwari RK, Rawat P. A combined experimental and theoretical (DFT and AIM) studies on synthesis, molecular structure, spectroscopic properties and multiple interactions analysis in a novel ethyl-4-[2-(thiocarbamoyl) hydrazinylidene]-3, 5-dimethyl-1h-pyrrole-2- carboxylate and its dimer. Spectrochim Acta. 2013;112:182–90.10.1016/j.saa.2013.04.002Suche in Google Scholar PubMed

[59] Ott JB, Boerio-Goates J. Calculations from statistical thermodynamics. USA: Academic Press, 2000.10.1016/B978-012530990-5/50011-0Suche in Google Scholar

[60] Zhang R, Dub B, Sun G, Sun Y. Molecular modeling and spectroscopic studies of benzothiazole. Spectrochim Acta. 2010;75A:115–1124.10.1016/j.saa.2009.12.067Suche in Google Scholar PubMed

[61] Kavipriya R, Kavitha HP, Karthikeyan B, Natraj A. Molecular structure, spectroscopic (FT-IR, FT-Raman), NBO analysis of N,N'Diphenyl-6-piperidinyl-1-yl-[1,3,5]-triazine-2,4-diamine. Spectrochim Acta A. 2015;156:476–87.10.1016/j.saa.2015.05.052Suche in Google Scholar PubMed

[62] Luque FJ, Lopez JM, Orozco M. Perspective on Electrostatic Interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor Chem Acc. 2000;103:343–5.10.1007/s002149900013Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (DOI:https://doi.org/10.1515/psr-2019-0003).


Published Online: 2021-01-20

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0003/html
Button zum nach oben scrollen