Home Physical Sciences A brief introduction to the basics of NMR spectroscopy and selected examples of its applications to materials characterization
Article
Licensed
Unlicensed Requires Authentication

A brief introduction to the basics of NMR spectroscopy and selected examples of its applications to materials characterization

  • Alberto Tampieri ORCID logo , Márk Szabó , Francesc Medina ORCID logo and Henrik Gulyás ORCID logo EMAIL logo
Published/Copyright: June 3, 2020
Become an author with De Gruyter Brill

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique that gives information on the local magnetic field around atomic nuclei. Since the local magnetic field of the nucleus is directly influenced by such features of the molecular structure as constitution, configuration, conformation, intermolecular interactions, etc., NMR can provide exhaustive information on the chemical structure, which is unrivaled by any other analytical method. Starting from the 1950s, NMR spectroscopy first revolutionized organic chemistry and became an indispensable tool for the structure elucidation of small, soluble molecules. As the technique evolved, NMR rapidly conquered other disciplines of chemical sciences. When the analysis of macromolecules and solids also became feasible, the technique turned into a staple in materials characterization, too. All aspects of NMR spectroscopy, including technical and technological development, as well as its applications in natural sciences, have been growing exponentially since its birth. Hence, it would be impossible to cover, or even touch on, all topics of importance related to this versatile analytical tool. In this tutorial, we aim to introduce the reader to the basic principles of NMR spectroscopy, instrumentation, historical development and currently available brands, practical cost aspects, sample preparation, and spectrum interpretation. We show a number of advanced techniques relevant to materials characterization. Through a limited number of examples from different fields of materials science, we illustrate the immense scope of the technique in the analysis of materials. Beyond our inherently limited introduction, an ample list of references should help the reader to navigate further in the field of NMR spectroscopy.

Acknowledgements

We thank Dr. Shigetaka Hayano from Zeon Co. for providing us with NMR spectra to demonstrate the application of NMR spectroscopy to the analysis of organosoluble polymers. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 712949 (TECNIOspring PLUS) and from the Agency for Business Competitiveness of the Government of Catalonia. A.T. gratefully acknowledges his postgraduate scholarship 2018 FI_B 01124 cofunded by AGAUR, Government of Catalonia, and ESF, European Union.

References

[1] Jameson CJ. Fundamental intramolecular and intermolecular information from NMR in the gas phase. In: Jackowski K, Jaszunski M, editor(s). Gas Phase NMR. Cambridge: Royal Society of Chemistry. Chapter 1; 2016:1–51. New Developments in NMR.10.1039/9781782623816-00001Search in Google Scholar

[2] Becker ED. A brief history of nuclear magnetic resonance. Anal Chem. 1993;65 295A-302A.10.1021/ac00054a716Search in Google Scholar

[3] Schwalbe H. New 1.2 GHz NMR spectrometers - New horizons? Angew Chem (Int Ed English). 2017;56:10252–3.10.1002/anie.201705936Search in Google Scholar PubMed

[4] Webb A. Magnetic resonance technology: hardware and system component design. Cambridge UK: Royal Society of Chemistry. New Developments in NMR 7. 2016.10.1039/9781782623878Search in Google Scholar

[5] Berger S, Braun S. 200 and more NMR experiments: a practical course. Weinheim: Wiley-VCH, 2004.Search in Google Scholar

[6] Grant DM, Harris RK. Encyclopedia of nuclear magnetic resonance. Chichester, New York: John Wiley, 1996–2002.Search in Google Scholar

[7] Macomber R. A complete introduction to modern NMR spectroscopy. Wiley: New York, 1998.Search in Google Scholar

[8] Bruker. Ascend 1.1 GHz: a technological milestone. https://www.bruker.com/products/mr/nmr/magnets/magnets/ascend/ascend-11-ghz.html.Search in Google Scholar

[9] Grootveld M, Percival B, Gibson M, Osman Y, Edgar M, Molinari M, et al. Progress in low-field benchtop NMR spectroscopy in chemical and biochemical analysis. Anal Chim Acta. 2019;1067:11–30.10.1016/j.aca.2019.02.026Search in Google Scholar PubMed

[10] Kovacs H, Moskau D, Spraul M. Cryogenically cooled probes—a leap in NMR technology. Prog Nucl Magn Reson Spectrosc. 2005;46:131–55.10.1016/j.pnmrs.2005.03.001Search in Google Scholar

[11] Doty FD. Solid state NMR probe design. In: Harris RK, Wasylishen RL, editors. eMagRes. Chichester, UK: John Wiley & Sons, Ltd, 2007:2042.Search in Google Scholar

[12] Schorn C. NMR spectroscopy: data acquisition. Weinheim: Wiley-VCH, 2001.10.1002/3527600604Search in Google Scholar

[13] Kimmich R. NMR: tomography, diffusometry, relaxometry. Berlin: Springer Berlin, 2013.Search in Google Scholar

[14] Blümich B, Singh K. Desktop NMR and its applications from materials science to organic chemistry. Angew Chem (Int Ed English). 2018;57:6996–7010.10.1002/anie.201707084Search in Google Scholar PubMed

[15] Rugar D, Budakian R, Mamin HJ, Chui BW. Single spin detection by magnetic resonance force microscopy. Nature. 2004;430:329–32.10.1038/nature02658Search in Google Scholar PubMed

[16] Arnold JT, Dharmatti SS, Packard ME. Chemical effects on nuclear induction signals from organic compounds. J Chem Phys. 1951;19:507.10.1063/1.1748264Search in Google Scholar

[17] Shoolery JN. The development of experimental and analytical high resolution NMR. Prog Nucl Magn Reson Spectrosc. 1995;28:37–52.10.1016/0079-6565(95)01019-XSearch in Google Scholar

[18] Ernst RR, Anderson WA. Application of Fourier Transform spectroscopy to magnetic resonance. Rev Sci Instrum. 1966;37:93–102.10.1063/1.1719961Search in Google Scholar

[19] Freeman R, Morris GA. The Varian story. J Magn Reson (San Diego, Calif.: 1997). 2015;250:80–4.10.1016/j.jmr.2014.12.001Search in Google Scholar PubMed

[20] Aue WP, Bartholdi E, Ernst RR. Two-dimensional spectroscopy. Application to Nuclear Magnetic Resonance. J Chem Phys. 1976;64:2229–46.10.1063/1.432450Search in Google Scholar

[21] Reisch MS, Kemsley J. Agilent Draws Academics’ Ire. Chem Eng News. 2014;92:17–18.10.1021/cen-09247-bus2Search in Google Scholar

[22] JEOL. JEOL NMR catalogue 2019. https://www.jeol.co.jp/en/products/category_nmr.html.Search in Google Scholar

[23] JEOL USA. JEOL resonance introduces new zero boil off magnet for NMR systems. https://www.jeolusa.com/NEWS-EVENTS/Press-Releases/jeol-resonance-introduces-new-zero-boil-off-magnet-for-nmr-systems.Search in Google Scholar

[24] Anklin C Spotlight on nuclear magnetic resonance: a timeless technique. https://www.spectroscopyeurope.com/article/spotlight-nuclear-magnetic-resonance-timeless-technique.Search in Google Scholar

[25] Ernst RR. Zurich’s contributions to 50 years development of Bruker. Angew Chem (Int Ed English). 2010;49:8310–15.10.1002/anie.201005067Search in Google Scholar PubMed PubMed Central

[26] Bhattacharya Ananyo. Chemistry: Breaking the billion-hertz barrier. Nature:605–606. https://www.nature.com/articles/463605a.10.1038/463605aSearch in Google Scholar PubMed

[27] PR Newswire. Bruker announces world’s first superconducting 1.1 gigahertz magnet for high-resolution NMR in structural biology. https://www.prnewswire.com/news-releases/bruker-announces-worlds-first-superconducting-1-1-gigahertz-magnet-for-high-resolution-nmr-in-structural-biology-300825288.html.Search in Google Scholar

[28] St. Jude Inspire. World’s most powerful nuclear magnetic resonance spectrometer arrives at St. Jude. https://www.stjude.org/inspire/news/semiconductor-ascend-nmr-spectrometer.html.Search in Google Scholar

[29] Bruker. Bruker announces world’s first 1.2 GHz high-resolution protein NMR data. https://ir.bruker.com/press-releases/press-release-details/2019/Bruker-Announces-Worlds-First-12-GHz-High-Resolution-Protein-NMR-Data/default.aspx.Search in Google Scholar

[30] Bible RH. NMR instrumentation since the Varian A-60. Appl Spectrosc. 1970;24:326–31.10.1366/000370270774371705Search in Google Scholar

[31] Masili A, Puligheddu S, Sassu L, Scano P, Lai A. Prediction of physical-chemical properties of crude oils by 1H NMR analysis of neat samples and chemometrics. Magn Reson Chem: MRC. 2012;50:729–38.10.1002/mrc.3872Search in Google Scholar PubMed

[32] Hoye TR, Eklov BM, Ryba TD, Voloshin M, Yao LJ. No-D NMR (no-deuterium proton NMR) spectroscopy: a simple yet powerful method for analyzing reaction and reagent solutions. Org Lett. 2004;6:953–6.10.1021/ol049979+Search in Google Scholar PubMed

[33] Fulmer GR, Miller AJ, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics. 2010;29:2176–9.10.1021/om100106eSearch in Google Scholar

[34] Giraudeau P, Tea I, Remaud GS, Akoka S. Reference and normalization methods: essential tools for the intercomparison of NMR spectra. J Pharm Biomed Anal. 2014;93:3–16.10.1016/j.jpba.2013.07.020Search in Google Scholar

[35] Harris RK, Becker ED, Cabral de Menezes SM, Granger P, Hoffman RE, Zilm KW. Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008). Pure and Appl Chem. 2008;80:59–84.10.1351/pac200880010059Search in Google Scholar

[36] Hoffman RE. Standardization of chemical shifts of TMS and solvent signals in NMR solvents. Magn Reson Chem: MRC. 2006;44:606–16.10.1002/mrc.1801Search in Google Scholar

[37] Shaver R, van Wallendael S, Rillema DP. A rapid method for degassing samples. J Chem Educ. 1991;68:604.10.1021/ed068p604Search in Google Scholar

[38] Landrie CL, Marszalek R. A durable and economical NMR tube cleaner. J Chem Educ. 2011;88:1734–5.10.1021/ed200104vSearch in Google Scholar

[39] Taylor RE. Setting up 13C CP/MAS experiments. Concepts Magn Reson. 2004;22A:37–49.10.1002/cmr.a.20008Search in Google Scholar

[40] Paulson EK, Zilm KW. External field-frequency lock probe for high resolution solid state NMR. Rev Sci Instrum. 2005;76:26104.10.1063/1.1841972Search in Google Scholar

[41] Morcombe CR, Zilm KW. Chemical shift referencing in MAS solid state NMR. J Magn Reson (San Diego, Calif.: 1997). 2003;162:479–86.10.1016/S1090-7807(03)00082-XSearch in Google Scholar

[42] Bertani P, Raya J, Bechinger B. 15N chemical shift referencing in solid state NMR. Solid State Nucl Magn Reson. 2014;61-62:15–18.10.1016/j.ssnmr.2014.03.003Search in Google Scholar PubMed

[43] Ziarelli F, Caldarelli S. Solid-state NMR as an analytical tool: quantitative aspects. Solid State Nucl Magn Reson. 2006;29:214–18.10.1016/j.ssnmr.2005.08.013Search in Google Scholar PubMed

[44] Turcu RV, Hoyt DW, Rosso KM, Sears JA, Loring JS, Felmy AR, et al. Rotor design for high pressure magic angle spinning nuclear magnetic resonance. J Magn Reson (San Diego, Calif.: 1997). 2013;226:64–9.10.1016/j.jmr.2012.08.009Search in Google Scholar PubMed

[45] Hu JZ, Sears JA, Mehta HS, Ford JJ, Kwak JH, Zhu K, et al. A large sample volume magic angle spinning nuclear magnetic resonance probe for in situ investigations with constant flow of reactants. Phys Chem Chem Phys: PCCP. 2012;14:2137–43.10.1039/C1CP22692DSearch in Google Scholar

[46] Hayashi S. Sealing effect of magic-angle-spinning rotors in solid-state NMR. Anal Sci. 2009;25:133–6.10.2116/analsci.25.133Search in Google Scholar PubMed

[47] Hisao GS, Harland MA, Brown RA, Berthold DA, Wilson TE, Rienstra CM. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors. J Magn Reson (San Diego, Calif.: 1997). 2016;265:172–6.10.1016/j.jmr.2016.01.009Search in Google Scholar PubMed PubMed Central

[48] König R, Scholz G, Kemnitz E. New inserts and low temperature–two strategies to overcome the bottleneck in MAS NMR on wet gels. Solid State Nucl Magn Reson. 2007;32:78–88.10.1016/j.ssnmr.2007.09.001Search in Google Scholar PubMed

[49] Varian. I. N. s. Installation planning guide: Pub. No. 01-999262-00, Rev. A0305.Search in Google Scholar

[50] Bruker. Site planning for AVANCE systems: 300-700 MHz user guide. Version 005.Search in Google Scholar

[51] Reisch MS. A renaissance for NMRs, big and small. Chem Eng News. 2015;93:19–21.10.1021/cen-09337-bus1Search in Google Scholar

[52] Bruker. Manual probes: user manual. Version 003.Search in Google Scholar

[53] Bruker. Basic 1D and 2D experiments: introduction to 1- and 2-dimensional NMR spectroscopy. Version 001.Search in Google Scholar

[54] Bruker. Solid state NMR avance solids: user manual. Version 002.Search in Google Scholar

[55] Information from Gábor Csatádi, Bruker’s Hungarian sales person, as of June 2019.Search in Google Scholar

[56] Reisch MS. NMR instrument price hikes spook users. Chem Eng News. 2015;93:16.Search in Google Scholar

[57] Mukhopadhyay R. Liquid NMR probes: oh so many choices. Anal Chem. 2007;79:7959–63.10.1021/ac071984eSearch in Google Scholar PubMed

[58] Spectroscopy Editors. Market profile: NMR probes. Spectroscopyonline. 2011;26 http://www.spectroscopyonline.com/market-profile-nmr-probes.Search in Google Scholar

[59] Reisch MS. Securing the future of NMR. Chem Eng News. 2016;94:17–18.Search in Google Scholar

[60] Reisch MS. Helium supplies are tightening up again. Chem Eng News. 2018;96:11.Search in Google Scholar

[61] Information gathered on Wilmad-Labglass website (leading manufacturer of NMR consumables), as of July 2019.Search in Google Scholar

[62] Information gathered on Sigma-Aldrich (Merck) website, as of July 2019.Search in Google Scholar

[63] Pérez-Trujillo M, Parella T, Kuhn LT. NMR-aided differentiation of enantiomers: signal enantioresolution. Anal Chim Acta. 2015;876:63–70.10.1016/j.aca.2015.02.069Search in Google Scholar PubMed

[64] Labuta J, Ishihara S, Šikorský T, Futera Z, Shundo A, Hanyková L, et al. NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers. Nat Commun. 2013;4:2188.10.1038/ncomms3188Search in Google Scholar PubMed PubMed Central

[65] Yadav LDS. Organic spectroscopy. Dordrecht: Springer Netherlands, 2005.10.1007/978-1-4020-2575-4Search in Google Scholar

[66] Castañar L, Parella T. Broadband 1H homodecoupled NMR experiments: recent developments, methods and applications. Magn Reson Chem: MRC. 2015;53:399–426.10.1002/mrc.4238Search in Google Scholar

[67] Derome AE. Modern NMR techniques for chemistry research. Oxford: Pergamon Press, 1987.Search in Google Scholar

[68] Silverstein RM, Kiemle DJ, Webster FX. The spectrometric identification of organic compounds, 7th ed. Hoboken: John Wiley & Sons, 2005.Search in Google Scholar

[69] Kay LE. Field gradient techniques in NMR spectroscopy. Curr Opin Struct Biol. 1995;5:674–81.10.1016/0959-440X(95)80061-1Search in Google Scholar

[70] Morris GA. Two-dimensional J -resolved spectroscopy. In: Harris RK, editor. Encyclopedia of magnetic resonance. Chichester, UK: John Wiley & Sons, Ltd, 2007.Search in Google Scholar

[71] Zangger K. Pure shift NMR. Prog Nucl Magn Reson Spectrosc. 2015;86-87:1–20.10.1016/j.pnmrs.2015.02.002Search in Google Scholar PubMed

[72] Giraudeau P, Frydman L. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy. Annu Rev Anal Chem (Palo Alto Calif). 2014;7:129–61.10.1146/annurev-anchem-071213-020208Search in Google Scholar PubMed PubMed Central

[73] Gouilleux Boris, Rouger Laetitia, Giraudeau Patrick. Ultrafast 2D NMR: Methods and Applications. Annual Reports on NMR Spectroscopy. 2018;93:75–144.10.1016/bs.arnmr.2017.08.003Search in Google Scholar

[74] Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin SF, Kurzbach D, Vuichoud B. Hyperpolarized NMR spectroscopy: d-DNP, PHIP, and SABRE techniques. Chem Asian J. 2018;15:1857–1871.10.1002/asia.201800551Search in Google Scholar PubMed PubMed Central

[75] Robertson Thomas B.R., Mewis Ryan E. Perspective on the Hyperpolarisation Technique Signal Amplification by Reversible Exchange (SABRE) in NMR Spectroscopy and MR Imaging. Annual Reports on NMR Spectroscopy. 2018;93:145–212.10.1016/bs.arnmr.2017.08.001Search in Google Scholar

[76] Singh K, Blümich B. NMR spectroscopy with compact instruments. TrAC Trends Anal Chem. 2016;83:12–26.10.1016/j.trac.2016.02.014Search in Google Scholar

[77] Gouilleux B, Charrier B, Akoka S, Felpin F-X, Rodriguez-Zubiri M, Giraudeau P. Ultrafast 2D NMR on a benchtop spectrometer: applications and perspectives. TrAC Trends Anal Chem. 2016;83:65–75.10.1016/j.trac.2016.01.014Search in Google Scholar

[78] Billeter M, Orekhov V, Arthanari H. Novel sampling approaches in higher dimensional NMR; Topics in current chemistry 316. Berlin, New York: Springer, 2012.10.1007/978-3-642-27160-1Search in Google Scholar

[79] Mobli M, Hoch JC, editors. Fast NMR data acquisition: beyond the Fourier transform; New Developments in NMR no.11. United Kingdom: Royal Society of Chemistry, 2017.10.1039/9781782628361Search in Google Scholar

[80] Kazimierczuk K, Orekhov V. Non-uniform sampling: post-Fourier era of NMR data collection and processing. Magn Reson Chem: MRC. 2015;53:921–6.10.1002/mrc.4284Search in Google Scholar

[81] Laws DD, Bitter H-M, Jerschow A. Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed. 2002;41:3096–129.10.1002/1521-3773(20020902)41:17<3096::AID-ANIE3096>3.0.CO;2-XSearch in Google Scholar

[82] Facelli JC. Chemical shift tensors: theory and application to molecular structural problems. Prog Nucl Magn Reson Spectrosc. 2011;58:176–201.10.1016/j.pnmrs.2010.10.003Search in Google Scholar

[83] Gee M, Wasylishen RE, Eichele K, Britten JF. Phosphorus chemical shift tensors for tetramethyldiphosphine disulfide: A 31 P single-crystal NMR, dipolar-chemical shift NMR, and Ab Initio molecular orbital study. J Phys Chem A. 2000;104:4598–605.10.1021/jp9944839Search in Google Scholar

[84] Antzutkin ON. Sideband manipulation in magic-angle-spinning nuclear magnetic resonance. Prog Nucl Magn Reson Spectrosc. 1999;35:203–66.10.1016/S0079-6565(99)00010-2Search in Google Scholar

[85] Deschamps Michaël. Ultrafast Magic Angle Spinning Nuclear Magnetic Resonance. Annual Reports on NMR Spectroscopy. 2014;81:109–144.10.1016/B978-0-12-800185-1.00003-6Search in Google Scholar

[86] Bruker. Magic angle spinning above 100kHz. https://www.bruker.com/fileadmin/user_upload/1-Products/Magnetic_Resonance/NMR/probes/Solids/04_ENC15_111KHz-MAS-lowres.pdf.Search in Google Scholar

[87] JEOL USA. JEOL RESONANCE introduces worlds’ fastest and smallest solid state NMR probe. https://www.jeolusa.com/NEWS-EVENTS/Press-Releases/jeol-resonance-introduces-worlds-fastest-and-smallest-solid-state-nmr-probe-.Search in Google Scholar

[88] Lin Y-L, Cheng Y-S, Ho C-I, Guo Z-H, Huang S-J, Org M-L, et al. Preparation of fibril nuclei of beta-amyloid peptides in reverse micelles. Chem Commun (Cambridge, England). 2018;54:10459–62.10.1039/C8CC05882BSearch in Google Scholar

[89] Nishiyama Y. Solid-state NMR under ultrafast MAS rate of 40–120 kHz. In: Soci TN, editor. Experimental approaches of NMR spectroscopy. Singapore: Springer Singapore 2018:171–95.10.1007/978-981-10-5966-7_6Search in Google Scholar

[90] Zhang R, Mroue KH, Ramamoorthy A. Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy. Acc Chem Res. 2017;50:1105–13.10.1021/acs.accounts.7b00082Search in Google Scholar

[91] Madhu PK. Heteronuclear spin decoupling in solid-state nuclear magnetic resonance: overview and outlook. Isr J Chem. 2014;54:25–38.10.1002/ijch.201300097Search in Google Scholar

[92] Mote KR, Agarwal V, Madhu PK. Five decades of homonuclear dipolar decoupling in solid-state NMR: status and outlook. Prog Nucl Magn Reson Spectrosc. 2016;97:1–39.10.1016/j.pnmrs.2016.08.001Search in Google Scholar

[93] McDermott AE, Creuzet FJ, Kolbert AC, Griffin RG. High-resolution magic-angle-spinning NMR spectra of protons in deuterated solids. J Magn Reson (1969). 1992;98:408–13.10.1016/0022-2364(92)90141-SSearch in Google Scholar

[94] Marchetti A, Jehle S, Felletti M, Knight MJ, Wang Y, Xu Z-Q, et al. Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Angew Chem (Int Ed English). 2012;51:10756–9.10.1002/anie.201203124Search in Google Scholar

[95] Madhu PK. High-resolution solid-state NMR spectroscopy of protons with homonuclear dipolar decoupling schemes under magic-angle spinning. Solid State Nucl Magn Reson. 2009;35:2–11.10.1016/j.ssnmr.2008.11.001Search in Google Scholar

[96] Dec SF, Bronnimann CE, Wind RA, Maciel GE. Comparison of the 1H NMR analysis of solids by the CRAMPS and MAS-only techniques. J Magn Reson (1969). 1989;82:454–66.10.1016/0022-2364(89)90209-6Search in Google Scholar

[97] Sternberg U, Witter R, Kuprov I, Lamley JM, Oss A, Lewandowski JR, et al. 1H line width dependence on MAS speed in solid state NMR - Comparison of experiment and simulation. J Magn Reson (San Diego, Calif.: 1997). 2018;291:32–9.10.1016/j.jmr.2018.04.003Search in Google Scholar PubMed

[98] Brown SP. Probing proton–proton proximities in the solid state. Prog Nucl Magn Reson Spectrosc. 2007;50:199–251.10.1016/j.pnmrs.2006.10.002Search in Google Scholar

[99] Elena B, Emsley L. Powder crystallography by proton solid-state NMR spectroscopy. J Am Chem Soc. 2005;127:9140–6.10.1021/ja051208tSearch in Google Scholar PubMed

[100] Nishiyama Y, Zhang R, Ramamoorthy A. Finite-pulse radio frequency driven recoupling with phase cycling for 2D (1)H/(1)H correlation at ultrafast MAS frequencies. J Magn Reson (San Diego, Calif.: 1997). 2014;243:25–32.10.1016/j.jmr.2014.03.004Search in Google Scholar PubMed PubMed Central

[101] Saalwächter K, Lange F, Matyjaszewski K, Huang C-F, Graf R. BaBa-xy16: robust and broadband homonuclear DQ recoupling for applications in rigid and soft solids up to the highest MAS frequencies. J Magn Reson (San Diego, Calif.: 1997). 2011;212:204–15.10.1016/j.jmr.2011.07.001Search in Google Scholar PubMed

[102] Reddy GN, Malon M, Marsh A, Nishiyama Y, Brown SP. Fast magic-angle spinning three-dimensional NMR experiment for simultaneously probing H-H and N-H proximities in solids. Anal Chem. 2016;88:11412–19.10.1021/acs.analchem.6b01869Search in Google Scholar PubMed

[103] André M, Piotto M, Caldarelli S, Dumez J-N. Ultrafast high-resolution magic-angle-spinning NMR spectroscopy. Analyst. 2015;140:3942–6.10.1039/C5AN00653HSearch in Google Scholar

[104] Mao K, Pruski M. Directly and indirectly detected through-bond heteronuclear correlation solid-state NMR spectroscopy under fast MAS. J Magn Reson (San Diego, Calif.: 1997). 2009;201:165–74.10.1016/j.jmr.2009.09.004Search in Google Scholar PubMed

[105] Massiot D, Fayon F, Deschamps M, Cadars S, Florian P, Montouillout V, et al. Detection and use of small J couplings in solid state NMR experiments. Comp Rend Chim. 2010;13:117–29.10.1016/j.crci.2009.05.001Search in Google Scholar

[106] Burum DP. Cross polarization in solids. In: Harris RK, Wasylishen RL, editors. eMagRes. Chichester, UK: John Wiley & Sons, Ltd, 2007:57.Search in Google Scholar

[107] Zhang R, Mroue KH, Ramamoorthy A. Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy. J Magn Reson (San Diego, Calif.: 1997). 2016;266:59–66.10.1016/j.jmr.2016.03.006Search in Google Scholar PubMed PubMed Central

[108] Johnson RL, Schmidt-Rohr K. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J Magn Reson (San Diego, Calif.: 1997). 2014;239:44–9.10.1016/j.jmr.2013.11.009Search in Google Scholar PubMed

[109] Lilly Thankamony AS, Wittmann JJ, Kaushik M, Corzilius B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog Nucl Magn Reson Spectrosc. 2017;102-103:120–95.10.1016/j.pnmrs.2017.06.002Search in Google Scholar PubMed

[110] Rossini AJ, Zagdoun A, Lelli M, Lesage A, Copéret C, Emsley L. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc Chem Res. 2013;46:1942–51.10.1021/ar300322xSearch in Google Scholar PubMed

[111] Rosay M, Blank M, Engelke F. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR. J Magn Reson (San Diego, Calif.: 1997). 2016;264:88–98.10.1016/j.jmr.2015.12.026Search in Google Scholar PubMed

[112] Matsuki Y, Nakamura S, Fukui S, Suematsu H, Fujiwara T. Closed-cycle cold helium magic-angle spinning for sensitivity-enhanced multi-dimensional solid-state NMR. J Magn Reson (San Diego, Calif.: 1997). 2015;259:76–81.10.1016/j.jmr.2015.08.003Search in Google Scholar PubMed

[113] Bouleau E, Saint-Bonnet P, Mentink-Vigier F, Takahashi H, Jacquot J-F, Bardet M, et al. Pushing NMR sensitivity limits using dynamic nuclear polarization with closed-loop cryogenic helium sample spinning. Chem Sci. 2015;6:6806–12.10.1039/C5SC02819ASearch in Google Scholar

[114] Concistrè M, Johannessen OG, Carignani E, Geppi M, Levitt MH. Magic-angle spinning NMR of cold samples. Acc Chem Res. 2013;46:1914–22.10.1021/ar300323cSearch in Google Scholar PubMed

[115] Kärger Jörg, Freude Dieter, Haase Jürgen. Diffusion in nanoporous materials: novel insights by combining MAS and PFG NMR. Processes. 2018;6:147.10.3390/pr6090147Search in Google Scholar

[116] Ashbrook SE, Duer MJ. Structural information from quadrupolar nuclei in solid state NMR. Concepts Magn Reson. 2006;28A:183–248.10.1002/cmr.a.20053Search in Google Scholar

[117] Man PP. Quadrupole couplings in nuclear magnetic resonance, general. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester, UK: John Wiley & Sons, Ltd, 2006:685.Search in Google Scholar

[118] Mizuno M. Solid-state 2H NMR studies of molecular motion in functional materials. In: Soci TN, editor. Experimental approaches of NMR spectroscopy. Singapore: Springer Singapore, 2018:341–64.10.1007/978-981-10-5966-7_12Search in Google Scholar

[119] Freude D. Quadrupolar nuclei in solid-State Nuclear Magnetic resonance. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester, UK: John Wiley & Sons, Ltd, 2006:126.Search in Google Scholar

[120] Amoureux J-P, Pruski M. MQMAS NMR: experimental strategies and applications. In: Harris RK, Wasylishen RL, editors. eMagRes. Chichester, UK: John Wiley & Sons, Ltd, 2007:1659.Search in Google Scholar

[121] Gan Z. Perspectives on high-field and solid-state NMR methods of quadrupole nuclei. J Magn Reson (San Diego, Calif.: 1997). 2019;306:86–90.10.1016/j.jmr.2019.07.028Search in Google Scholar PubMed

[122] Vosegaard T, Kehlet C, Khaneja N, Glaser SJ, Nielsen NC. Improved excitation schemes for multiple-quantum magic-angle spinning for quadrupolar nuclei designed using optimal control theory. J Am Chem Soc. 2005;127:13768–9.10.1021/ja054035gSearch in Google Scholar PubMed

[123] Wu G, Rovnyak D, Griffin RG. Quantitative multiple-quantum magic-angle-spinning NMR spectroscopy of quadrupolar nuclei in solids. J Am Chem Soc. 1996;118:9326–32.10.1021/ja9614676Search in Google Scholar

[124] Colaux H, Dawson DM, Ashbrook SE. Investigating FAM-N pulses for signal enhancement in MQMAS NMR of quadrupolar nuclei. Solid State Nucl Magn Reson. 2017;84:89–102.10.1016/j.ssnmr.2017.01.001Search in Google Scholar

[125] Koczor B, Rohonczy J. A novel pulse scheme for multiple quantum excitation, SFAM to enhance the sensitivity of MQMAS experiments. Solid State Nucl Magn Reson. 2016;74-75:1–9.10.1016/j.ssnmr.2016.02.001Search in Google Scholar

[126] Amoureux JP, Delevoye L, Steuernagel S, Gan Z, Ganapathy S, Montagne L. Increasing the sensitivity of 2D high-resolution NMR methods applied to quadrupolar nuclei. J Magn Reson (San Diego, Calif.: 1997). 2005;172:268–78.10.1016/j.jmr.2004.11.001Search in Google Scholar

[127] Kentgens AP, Verhagen R. Advantages of double frequency sweeps in static, MAS and MQMAS NMR of spin I=3/2 nuclei. Chem Phys Lett. 1999;300:435–43.10.1016/S0009-2614(98)01402-XSearch in Google Scholar

[128] Lefort R, Wiench JW, Pruski M, Amoureux J-P. Optimization of data acquisition and processing in Carr–Purcell–Meiboom–Gill multiple quantum magic angle spinning nuclear magnetic resonance. J Chem Phys. 2002;116:2493–501.10.1063/1.1433000Search in Google Scholar

[129] Gan Z. Isotropic NMR spectra of half-integer quadrupolar nuclei using satellite transitions and magic-angle spinning. J Am Chem Soc. 2000;122:3242–3.10.1021/ja9939791Search in Google Scholar

[130] Hung I, Gan Z. A magic-angle turning NMR experiment for separating spinning sidebands of half-integer quadrupolar nuclei. Chem Phys Lett. 2010;496:162–6.10.1016/j.cplett.2010.07.016Search in Google Scholar

[131] Gullion T, Schaefer J. Rotational-echo double-resonance NMR. J Magn Reson (1969). 1989;81:196–200.10.1007/1-4020-3910-7_89Search in Google Scholar

[132] Fyfe CA, Mueller KT, Grondey H, Wong-Moon KC. Dipolar dephasing between quadrupolar and spin-12 nuclei. REDOR and TEDOR NMR experiments on VPI-5. Chem Phys Lett. 1992;199:198–204.10.1016/0009-2614(92)80069-NSearch in Google Scholar

[133] Toke O, Cegelski L. REDOR applications in biology: an overview. In: Harris RK, editor. Encyclopedia of magnetic resonance. Chichester, UK: John Wiley & Sons, Ltd, 2007:196.Search in Google Scholar

[134] Hing AW, Vega S, Schaefer J. Transferred-echo double-resonance NMR. J Magn Reson (1969). 1992;96:205–9.10.1016/0022-2364(92)90305-QSearch in Google Scholar

[135] Grey CP, Eijkelenboom AP, Veeman WS. 14N Population transfers in two-dimensional 13C 14N 1H triple-resonance magic-angle spinning nuclear magnetic resonance spectroscopy. Solid State Nucl Magn Reson. 1995;4:113–20.10.1016/0926-2040(94)00041-ASearch in Google Scholar

[136] Gullion T. Measurement of dipolar interactions between spin-12 and quadrupolar nuclei by rotational-echo, adiabatic-passage, double-resonance NMR. Chem Phys Lett. 1995;246:325–30.10.1016/0009-2614(95)01120-XSearch in Google Scholar

[137] Claridge TD. High-resolution NMR techniques in Organic Chemistry, 3rd ed. Amsterdam: Elsevier, 2016.10.1016/B978-0-08-099986-9.00002-6Search in Google Scholar

[138] Fernandez C, Pruski M. Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances. Top Curr Chem. 2012;306:119–88.10.1007/128_2011_141Search in Google Scholar

[139] Cudby M.E.A., Willis H.A. The Nuclear Magnetic Resonance Spectra of Polymers. Annual Reports on NMR Spectroscopy. 1972;4:363–389.10.1016/S0066-4103(08)60348-8Search in Google Scholar

[140] Matyjaszewski K, Möller M. Polymer science: a comprehensive reference. Elsevier: Amsterdam, 2012.Search in Google Scholar

[141] Rinaldi PL. Polymer characterization by 3D solution NMR. In: Cheng HN, English AD, editors. NMR spectroscopy of polymers in solution and in the solid state; ACS Symposium Series. Washington, DC: American Chemical Society, 2002:94–122.10.1021/bk-2003-0834.ch008Search in Google Scholar

[142] Guo X, Laryea E, Wilhelm M, Luy B, Nirschl H, Guthausen G. Diffusion in polymer solutions: molecular weight distribution by PFG-NMR and relation to SEC. Macromol Chem Phys. 2017;218:1600440.10.1002/macp.201600440Search in Google Scholar

[143] Janiak C, Lassahn PG. The Vinyl homopolymerization of norbornene. Macromol Rapid Commun. 2001;22:479–93.10.1002/1521-3927(20010401)22:7<479::AID-MARC479>3.0.CO;2-CSearch in Google Scholar

[144] Baugh LS, Canich JA. Stereoselective polymerization with single-site catalysts. Boca Raton: CRC Press, 2008.10.1201/9781420017083Search in Google Scholar

[145] Flook MM, Jiang AJ, Schrock RR, Müller P, Hoveyda AH. Z-selective olefin metathesis processes catalyzed by a molybdenum hexaisopropylterphenoxide monopyrrolide complex. J Am Chem Soc. 2009;131:7962–3.10.1021/ja902738uSearch in Google Scholar

[146] The poly(NBE) NMR spectra are courtesy of Shigetaka Hayano from Zeon Corp.Search in Google Scholar

[147] Autenrieth B, Schrock RR. Stereospecific Ring-Opening Metathesis Polymerization (ROMP) of norbornene and tetracyclododecene by Mo and W initiators. Macromolecules. 2015;48:2493–503.10.1021/acs.macromol.5b00161Search in Google Scholar

[148] Whittaker Andrew K. NMR Studies of Cross linked Polymers. Annual Reports on NMR Spectroscopy. 1997;34:105–183.10.1016/S0066-4103(08)60102-7Search in Google Scholar

[149] Mathur AM, Scranton AB. Characterization of hydrogels using nuclear magnetic resonance spectroscopy. Biomaterials. 1996;17:547–57.10.1016/0142-9612(96)88705-9Search in Google Scholar

[150] Ando I, Asakura T. Solid state NMR of polymers; Studies in physical and theoretical chemistry 84. Amsterdam, New York: Elsevier, 1998.Search in Google Scholar

[151] Rinaldi PL. Tutorial on solution NMR of polymers. In: Cheng HN, Asakura T, English AD, editors. NMR spectroscopy of polymers: innovative strategies for complex macromolecules; ACS Symposium Series. Washington, DC: American Chemical Society, 2011:37–63.10.1021/bk-2011-1077.ch003Search in Google Scholar

[152] Cheng HN, English AD. Advances in the NMR spectroscopy of polymers: an overview. In: Cheng HN, Asakura T, English AD, editors. NMR spectroscopy of polymers: innovative strategies for complex macromolecules; ACS Symposium Series. Washington, DC: American Chemical Society, 2011:3–20.10.1021/bk-2011-1077.ch001Search in Google Scholar

[153] Chakrapani SB, Minkler MJ, Beckingham BS. Low-field 1H-NMR spectroscopy for compositional analysis of multicomponent polymer systems. Analyst. 2019;144:1679–86.10.1039/C8AN01810CSearch in Google Scholar PubMed

[154] Bryce DL. NMR crystallography: structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCrJ. 2017;4:350–9.10.1107/S2052252517006042Search in Google Scholar PubMed PubMed Central

[155] Schwoerer M, Wolf HC. Organic molecular solids. Weinheim: Wiley-VCH, 2007.10.1002/9783527618651Search in Google Scholar

[156] Schmidt-Rohr K. Multidimensional solid-state NMR and polymers. Burlington: Elsevier Science, 2012.Search in Google Scholar

[157] Spiess HW. Polymer dynamics and order from multidimensional solid state NMR. In: Harris RK, editor. Encyclopedia of magnetic resonance. Chichester, UK: John Wiley & Sons, Ltd, 2007:1655.Search in Google Scholar

[158] Le D, Ziarelli F, Phan TN, Mollica G, Thureau P, Aussenac F, et al. Up to 100% improvement in dynamic nuclear polarization solid-state NMR sensitivity enhancement of polymers by removing oxygen. Macromol Rapid Commun. 2015;36:1416–21.10.1002/marc.201500133Search in Google Scholar PubMed

[159] Rouger L, Yon M, Sarou-Kanian V, Fayon F, Dumez J-N, Giraudeau P. Ultrafast acquisition of 1H-1H dipolar correlation experiments in spinning elastomers. J Magn Reson (San Diego, Calif.: 1997). 2017;277:30–5.10.1016/j.jmr.2017.02.005Search in Google Scholar PubMed

[160] Domján A, Manek E, Geissler E, László K. Host–guest interactions in poly(N -isopropylacrylamide) hydrogel seen by one- and two-dimensional 1 H CRAMPS solid-state NMR spectroscopy. Macromolecules. 2013;46:3118–24.10.1021/ma400295aSearch in Google Scholar

[161] Elena B, Pintacuda G, Mifsud N, Emsley L. Molecular structure determination in powders by NMR crystallography from proton spin diffusion. J Am Chem Soc. 2006;128:9555–60.10.1021/ja062353pSearch in Google Scholar

[162] Brown SP, Schnell I, Brand JD, Müllen K, Spiess HW. An investigation of π−π packing in a columnar hexabenzocoronene by fast magic-angle spinning and double-quantum 1 H solid-state NMR spectroscopy. J Am Chem Soc. 1999;121:6712–18.10.1021/ja990637mSearch in Google Scholar

[163] Kesling B, Hughes E, Gullion T. 13C–14N REAPDOR and 13C–2D θ-REDOR NMR on a blend of tri-p-tolylamine and bisphenol-A-polycarbonate. Solid State Nucl Magn Reson. 2000;16:1–7.10.1016/S0926-2040(00)00049-7Search in Google Scholar

[164] Dybowski C. Characterization of materials with NMR spectroscopy. In: Cheng HN, Asakura T, English AD, editors. NMR spectroscopy of polymers: innovative strategies for complex macromolecules; ACS Symposium Series. Washington, DC: American Chemical Society, 2011:135–60.Search in Google Scholar

[165] Spiess HW. 50th Anniversary perspective: the importance of NMR spectroscopy to macromolecular science. Macromolecules. 2017;50:1761–77.10.1021/acs.macromol.6b02736Search in Google Scholar

[166] Alam TM, Childress KK, Pastoor K, Rice CV. Characterization of free, restricted, and entrapped water environments in poly(N -isopropyl acrylamide) hydrogels via 1 H HRMAS PFG NMR spectroscopy. J Polym Sci Part B: Polym Phys. 2014;52:1521–7.10.1002/polb.23591Search in Google Scholar

[167] Maunu SL. NMR studies of wood and wood products. Prog Nucl Magn Reson Spectrosc. 2002;40:151–74.10.1016/S0079-6565(01)00041-3Search in Google Scholar

[168] Lambert JB, Wu Y, Santiago-Blay JA. High-resolution solid state NMR spectroscopy of cultural organic material. In: Webb GA, editor. Modern magnetic resonance. Cham: Springer International Publishing, 2016:1–22.Search in Google Scholar

[169] Asakura T, Tasei Y. NMR studies on silk materials. In: Soci TN, editor. Experimental approaches of NMR spectroscopy. Singapore: Springer Singapore, 2018:297–312.10.1007/978-981-10-5966-7_10Search in Google Scholar

[170] Fitzgerald JJ. Solid-state NMR spectroscopy of inorganic materials, vol. 717. Washington, DC: American Chemical Society, 1999.10.1021/bk-1999-0717Search in Google Scholar

[171] Hanna JV, Smith ME. Recent technique developments and applications of solid state NMR in characterising inorganic materials. Solid State Nucl Magn Reson. 2010;38:1–18.10.1016/j.ssnmr.2010.05.004Search in Google Scholar PubMed

[172] van der Klink JJ, Brom HB. NMR in metals, metal particles and metal cluster compounds. Prog Nucl Magn Reson Spectrosc. 2000;36:89–201.10.1016/S0079-6565(99)00020-5Search in Google Scholar

[173] Hatfield GR, Carduner KR. Solid state NMR: applications in high performance ceramics. J Mater Sci. 1989;24:4209–19.10.1007/BF00544489Search in Google Scholar

[174] Lapina OB, Shubin AA, Terskikh VV. Solid-state NMR of oxide-based materials. In: Webb GA, editor. Modern magnetic resonance. Cham: Springer International Publishing, 2016:1–37.Search in Google Scholar

[175] Ashbrook SE, Dawson DM. NMR spectroscopy of minerals and allied materials. In: Ramesh V, editor. Nuclear magnetic resonance; Nuclear Magnetic Resonance. Cambridge: Royal Society of Chemistry, 2016:1–52.Search in Google Scholar

[176] Youngman Randall. NMR Spectroscopy in Glass Science: A Review of the Elements. Materials. 2018;11(4):476.10.3390/ma11040476Search in Google Scholar PubMed PubMed Central

[177] Walkley B, Provis JL. Solid-state nuclear magnetic resonance spectroscopy of cements. Mater Today Adv. 2019;1:100007.10.1016/j.mtadv.2019.100007Search in Google Scholar

[178] De Souza FA, Ambrozio AR, Souza ES, Cipriano DF, Scopel WL, Freitas JC. NMR spectral parameters in graphene, graphite, and related materials: Ab Initio calculations and experimental results. J Phys Chem C. 2016;120:27707–16.10.1021/acs.jpcc.6b10042Search in Google Scholar

[179] Agarwal N, Nair MS, Mazumder A, Poluri KM Characterization of nanomaterials using nuclear magnetic resonance spectroscopy. In: Sneha Mohan Bhagyaraj, et al., editor(s). Characterization of nanomaterials. Duxford, Cambridge, Kidlington: Elsevier, 2018:61–102.10.1016/B978-0-08-101973-3.00003-1Search in Google Scholar

[180] Borisov AS, Hazendonk P, Hayes PG. Solid-state nuclear magnetic resonance spectroscopy: a review of modern techniques and applications for inorganic polymers. J Inorg Organomet Polym. 2010;20:183–212.10.1007/s10904-010-9358-5Search in Google Scholar

[181] Sirusi Ali A., Ross Joseph H. Recent NMR Studies of Thermoelectric Materials. Annual Reports on NMR Spectroscopy. 2017;92:137–198.10.1016/bs.arnmr.2017.04.002Search in Google Scholar

[182] Nagashima H, Tricot G, Trébosc J, Lafon O, Amoureux J-P, Pourpoint F. 3D correlation NMR spectrum between three distinct heteronuclei for the characterization of inorganic samples: application on sodium alumino-phosphate materials. Solid State Nucl Magn Reson. 2017;84:164–70.10.1016/j.ssnmr.2017.03.002Search in Google Scholar PubMed

[183] Martineau C. NMR crystallography: applications to inorganic materials. Solid State Nucl Magn Reson. 2014;63-64:1–12.10.1016/j.ssnmr.2014.07.001Search in Google Scholar PubMed

[184] Moran RF, Dawson DM, Ashbrook SE. Exploiting NMR spectroscopy for the study of disorder in solids. Int Rev Phys Chem. 2017;36:39–115.10.1080/0144235X.2017.1256604Search in Google Scholar

[185] Jain Mukul G., Mote Kaustubh R., Madhu Perunthiruthy K. NMR crystallography at fast magic-angle spinning frequencies: application of novel recoupling methods. Crystals. 2019;9(5):231.10.3390/cryst9050231Search in Google Scholar

[186] Bakhmutov VI. Solid-state NMR in materials science: principles and applications, 1st ed. Boca Raton: CRC Press, 2016.10.1201/b11301Search in Google Scholar

[187] Harris KD. New in situ solid-state NMR strategies for exploring materials formation and adsorption processes: prospects in heterogenous catalysis. Appl Petrochem Res. 2016;6:295–306.10.1007/s13203-016-0152-3Search in Google Scholar

[188] Marchetti A, Chen J, Pang Z, Li S, Ling D, Deng F, et al. Understanding surface and interfacial chemistry in functional nanomaterials via solid-state NMR. Adv Mater (Deerfield Beach, Fla.). 2017;29:1605895.10.1002/adma.201605895Search in Google Scholar PubMed

[189] Stebbins JF. Nuclear magnetic resonance at high temperature. Chem Rev. 1991;91:1353–73.10.1021/cr00007a004Search in Google Scholar

[190] Brus J, Dybal J. Hydrogen-bond interactions in organically-modified polysiloxane networks studied by 1D and 2D CRAMPS and double-quantum 1 H MAS NMR. Macromolecules. 2002;35:10038–47.10.1021/ma0204249Search in Google Scholar

[191] Mafra L, Rocha J, Fernandez C, Castro GR, García-Granda S, Espina A, et al. Characterization of layered γ-titanium phosphate (C 2 H 5 NH 3)[Ti(H 1.5 PO 4)(PO 4)] 2 ·H 2 O intercalate: a combined NMR, synchrotron XRD, and DFT calculations study. Chem Mater. 2008;20:3944–53.10.1021/cm800165pSearch in Google Scholar

[192] Ganapathy S, Fournier M, Paul JF, Delevoye L, Guelton M, Amoureux JP. Location of protons in anhydrous Keggin heteropolyacids H(3)PMo(12)O(40) and H(3)PW(12)O(40) by (1)H(31)P/(31)P(1)H REDOR NMR and DFT quantum chemical calculations. J Am Chem Soc. 2002;124:7821–8.10.1021/ja017848nSearch in Google Scholar PubMed

[193] Li Shenhui, Deng Feng. Recent Advances of Solid-State NMR Studies on Zeolites. Annual Reports on NMR Spectroscopy. 2013;78:1–54.10.1016/B978-0-12-404716-7.00001-8Search in Google Scholar

[194] Spencer TL, Plagos NW, Brouwer DH, Goward GR. The use of 6Li{7Li}-REDOR NMR spectroscopy to compare the ionic conductivities of solid-state lithium ion electrolytes. Phys Chem Chem Phys: PCCP. 2014;16:2515–26.10.1039/C3CP55132FSearch in Google Scholar PubMed

[195] Rottreau TJ, Parlett CM, Lee AF, Evans R. Diffusion NMR characterization of catalytic silica supports: a Tortuous path. J Phys Chem C. 2017;121:16250–6.10.1021/acs.jpcc.7b02929Search in Google Scholar

[196] Engelke S, Marbella LE, Trease NM, de Volder M, Grey CP. Three-dimensional pulsed field gradient NMR measurements of self-diffusion in anisotropic materials for energy storage applications. Phys Chem Chem Phys: PCCP. 2019;21:4538–46.10.1039/C8CP07776BSearch in Google Scholar

[197] Dvoyashkina N, Freude D, Stepanov AG, Böhlmann W, Krishna R, Kärger J, et al. Alkane/alkene mixture diffusion in silicalite-1 studied by MAS PFG NMR. Microporous Mesoporous Mater. 2018;257:128–34.10.1016/j.micromeso.2017.08.015Search in Google Scholar

[198] Lauerer A, Kurzhals R, Toufar H, Freude D, Kärger J. Tracing compartment exchange by NMR diffusometry: water in lithium-exchanged low-silica X zeolites. J Magn Reson (San Diego, Calif.: 1997). 2018;289:1–11.10.1016/j.jmr.2018.01.011Search in Google Scholar PubMed

[199] Cho Hyung Joon, Sigmund Eric E., Song Yiqiao. Magnetic resonance characterization of porous media using diffusion through internal magnetic fields. Materials. 2012;5(12):590–616.10.3390/ma5040590Search in Google Scholar PubMed PubMed Central

[200] Zhang Y, Xiao L, Liao G, Song Y-Q. Direct correlation of diffusion and pore size distributions with low field NMR. J Magn Reson (San Diego, Calif.: 1997). 2016;269:196–202.10.1016/j.jmr.2016.06.013Search in Google Scholar PubMed

[201] Martineau-Corcos C, Dědeček J, Taulelle F. 27Al-27Al double-quantum single-quantum MAS NMR: applications to the structural characterization of microporous materials. Solid State Nucl Magn Reson. 2017;84:65–72.10.1016/j.ssnmr.2016.12.013Search in Google Scholar PubMed

[202] Weiland E, Springuel-Huet M-A, Nossov A, Gédéon A. 129 xenon NMR: review of recent insights into porous materials. Microporous Mesoporous Mater. 2016;225:41–65.10.1016/j.micromeso.2015.11.025Search in Google Scholar

[203] Ashbrook SE, Smith ME. Solid state 17O NMR-an introduction to the background principles and applications to inorganic materials. Chem Soc Rev. 2006;35:718–35.10.1039/B514051JSearch in Google Scholar PubMed

[204] Bignami GP, Dawson DM, Seymour VR, Wheatley PS, Morris RE, Ashbrook SE. Synthesis, isotopic enrichment, and solid-state NMR characterization of zeolites derived from the assembly, disassembly, organization, reassembly process. J Am Chem Soc. 2017;139:5140–8.10.1021/jacs.7b00386Search in Google Scholar

[205] Blanc F, Sperrin L, Jefferson DA, Pawsey S, Rosay M, Grey CP. Dynamic nuclear polarization enhanced natural abundance 17O spectroscopy. J Am Chem Soc. 2013;135:2975–8.10.1021/ja4004377Search in Google Scholar

[206] Perras FA, Chaudhary U, Slowing II, Pruski M. Probing surface hydrogen bonding and dynamics by natural abundance, multidimensional, 17 O DNP-NMR spectroscopy. J Phys Chem C. 2016;120:11535–44.10.1021/acs.jpcc.6b02579Search in Google Scholar

[207] Satterlee JD. Fundamental concepts of NMR in paramagnetic systems part I: the isotropic shift. Concepts Magn Reson. 1990;2:69–79.10.1002/cmr.1820020204Search in Google Scholar

[208] Satterlee JD. Fundamental concepts of NMR in paramagnetic systems part II: relaxation effects. Concepts Magn Reson. 1990;2:119–29.10.1002/cmr.1820020302Search in Google Scholar

[209] Roessler MM, Salvadori E. Principles and applications of EPR spectroscopy in the chemical sciences. Chem Soc Rev. 2018;47:2534–53.10.1039/C6CS00565ASearch in Google Scholar

[210] Bertmer M. Paramagnetic solid-state NMR of materials. Solid State Nucl Magn Reson. 2017;81:1–7.10.1016/j.ssnmr.2016.10.006Search in Google Scholar

[211] Nishimura S, Takagaki A, Ebitani K. Characterization, synthesis and catalysis of hydrotalcite-related materials for highly efficient materials transformations. Green Chem. 2013;15:2026.10.1039/c3gc40405fSearch in Google Scholar

[212] Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today. 1991;11:173–301.10.1016/0920-5861(91)80068-KSearch in Google Scholar

[213] Sideris PJ, Nielsen UG, Gan Z, Grey CP. Mg/Al ordering in layered double hydroxides revealed by multinuclear NMR spectroscopy. Science (New York, N.Y.). 2008;321:113–17.10.1126/science.1157581Search in Google Scholar PubMed

[214] Abelló S, Medina F, Tichit D, Pérez-Ramírez J, Groen JC, Sueiras JE, et al. Aldol condensations over reconstructed Mg-Al hydrotalcites: structure-activity relationships related to the rehydration method. Chem Eur J. 2005;11:728–39.10.1002/chem.200400409Search in Google Scholar PubMed

[215] Matzkanin GA. A review of nondestructive characterization of composites using NMR. In: Höller P, Hauk V, Dobmann G, Ruud CO, Green RE, editors. Nondestructive characterization of materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989:655–69.10.1007/978-3-642-84003-6_77Search in Google Scholar

[216] Martini F, Geppi M, Borsacchi S. NMR spectroscopy of clay–polymer nanocomposites. Clay-Polymer Nanocomposites. Elsevier, 2017:307–25.10.1016/B978-0-323-46153-5.00009-4Search in Google Scholar

[217] Bonhomme C, Gervais C, Laurencin D. Recent NMR developments applied to organic-inorganic materials. Prog Nucl Magn Reson Spectrosc. 2014;77:1–48.10.1016/j.pnmrs.2013.10.001Search in Google Scholar PubMed

[218] Sutrisno A, Huang Y. Solid-state NMR: a powerful tool for characterization of metal-organic frameworks. Solid State Nucl Magn Reson. 2013;49-50:1–11.10.1016/j.ssnmr.2012.09.003Search in Google Scholar PubMed

[219] Grekov D, Vancompernolle T, Taoufik M, Delevoye L, Gauvin RM. Solid-state NMR of quadrupolar nuclei for investigations into supported organometallic catalysts: scope and frontiers. Chem Soc Rev. 2018;47:2572–90.10.1039/C7CS00682ASearch in Google Scholar PubMed

[220] Copéret C, Allouche F, Chan KW, Conley MP, Delley MF, Fedorov A, et al. Bridging the gap between industrial and well-defined supported catalysts. Angew Chem (Int Ed English). 2018;57:6398–440.10.1002/anie.201702387Search in Google Scholar PubMed

[221] Basset J-M, Gates BC, Candy J-P, Choplin A, Leconte M, Quignard F, et al. Surface organometallic chemistry: molecular approaches to surface catalysis. Dordrecht: Springer Netherlands, 1988.10.1007/978-94-009-2971-5Search in Google Scholar

[222] Basset JM, Ugo R. On the origins and development of “surface organometallic chemistry”. In: Basset J-M, Psaro R, Roberto D, Ugo R, editors. Modern surface organometallic chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009:1–21.10.1002/9783527627097Search in Google Scholar

[223] Pucino M, Mougel V, Schowner R, Fedorov A, Buchmeiser MR, Copéret C. Cationic silica-supported N-heterocyclic carbene tungsten oxo alkylidene sites: highly active and stable catalysts for olefin metathesis. Angew Chem (Int Ed English). 2016;55:4300–2.10.1002/anie.201510678Search in Google Scholar PubMed

[224] Pucino M, Inoue M, Gordon CP, Schowner R, Stöhr L, Sen S, et al. Promoting terminal olefin metathesis with a supported cationic molybdenum imido alkylidene N-heterocyclic carbene catalyst. Angew Chem (Int Ed English). 2018;57:14566–9.10.1002/anie.201808233Search in Google Scholar

[225] Ong T-C, Liao W-C, Mougel V, Gajan D, Lesage A, Emsley L, et al. Atomistic description of reaction intermediates for supported metathesis catalysts enabled by DNP SENS. Angew Chem (Int Ed English). 2016;55:4743–7.10.1002/anie.201510821Search in Google Scholar

[226] Ashbrook SE, Griffin JM, Johnston KE. Recent advances in solid-state nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem (Palo Alto Calif). 2018;11:485–508.10.1146/annurev-anchem-061417-125852Search in Google Scholar

[227] Férey G, Haouas M, Loiseau T, Taulelle F. Nanoporous solids: How do they form? An in situ approach. Chem Mater. 2013;26:299–309.10.1021/cm4019875Search in Google Scholar

[228] Haouas Mohamed. Nuclear magnetic resonance spectroscopy for in situ monitoring of porous materials formation under hydrothermal conditions. Materials. 2018;11:1416.10.3390/ma11081416Search in Google Scholar

[229] Hu JZ, Hu MY, Zhao Z, Xu S, Vjunov A, Shi H, et al. Sealed rotors for in situ high temperature high pressure MAS NMR. Chem Commun (Cambridge, England). 2015;51:13458–61.10.1039/C5CC03910JSearch in Google Scholar

[230] Hughes CE, Williams PA, Harris KD. “CLASSIC NMR”: an in-situ NMR strategy for mapping the time-evolution of crystallization processes by combined liquid-state and solid-state measurements. Angew Chem (Int Ed English). 2014;53:8939–43.10.1002/anie.201404266Search in Google Scholar

[231] Harris KD, Hughes CE, Williams PA, Edwards-Gau GR. ‘NMR Crystallization’: in-situ NMR techniques for time-resolved monitoring of crystallization processes. Acta Crystallogr Sec C, Struct Chem. 2017;73:137–48.10.1107/S2053229616019811Search in Google Scholar

[232] Odin C. NMR Studies of Phase Transitions. Annual Reports on NMR Spectroscopy. 2006;59:117–205.10.1016/S0066-4103(06)59003-9Search in Google Scholar

[233] Bielecki A, Burum DP. Temperature dependence of 207 Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS. J Magn Reson, Ser A. 1995;116:215–20.10.1006/jmra.1995.0010Search in Google Scholar

[234] Beckmann PA, Dybowski C. A thermometer for nonspinning solid-state NMR spectroscopy. J Magn Reson (San Diego, Calif.: 1997). 2000;146:379–80.10.1006/jmre.2000.2171Search in Google Scholar

[235] Bernard GM, Goyal A, Miskolzie M, McKay R, Wu Q, Wasylishen RE, et al. Methylammonium lead chloride: a sensitive sample for an accurate NMR thermometer. J Magn Reson (San Diego, Calif.: 1997). 2017;283:14–21.10.1016/j.jmr.2017.08.002Search in Google Scholar

[236] Zhang W, Xu S, Han X, Bao X. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem Soc Rev. 2012;41:192–210.10.1002/chin.201213279Search in Google Scholar

[237] Wang XL, Liu W, Yu -Y-Y, Song Y, Fang WQ, Wei D, et al. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions. Nat Commun. 2016;7:11918.10.1038/ncomms11918Search in Google Scholar

[238] Leutzsch M, Sederman AJ, Gladden LF, Mantle MD. In situ reaction monitoring in heterogeneous catalysts by a benchtop NMR spectrometer. Magn Reson Imaging. 2019;56:138–43.10.1016/j.mri.2018.09.006Search in Google Scholar

[239] Paul G, Bisio C, Braschi I, Cossi M, Gatti G, Gianotti E, et al. Combined solid-state NMR, FT-IR and computational studies on layered and porous materials. Chem Soc Rev. 2018;47:5684–739.10.1039/C7CS00358GSearch in Google Scholar

[240] Mori H, Kono H, Terano M, Nosov A, Zakharov VA. In situ CP MAS NMR spectroscopy under continuous-flow conditions to monitor real time dynamics during propene polymerization over a supported Ziegler catalyst. Macromol Rapid Commun. 1999;20:536–40.10.1002/(SICI)1521-3927(19991001)20:10<536::AID-MARC536>3.0.CO;2-ZSearch in Google Scholar

[241] Haven JJ, Junkers T. Online monitoring of polymerizations: current status. Eur J Org Chem. 2017;2017:6474–82.10.1002/ejoc.201700851Search in Google Scholar

[242] Hughes CE, Walkley B, Gardner LJ, Walling SA, Bernal SA, Iuga D, et al. Exploiting in-situ solid-state NMR spectroscopy to probe the early stages of hydration of calcium aluminate cement. Solid State Nucl Magn Reson. 2019;99:1–6.10.1016/j.ssnmr.2019.01.003Search in Google Scholar

[243] Pecher Oliver, Vyalikh Anastasia, Grey Clare P. Challenges and new opportunities of in situ NMR characterization of electrochemical processes. AIP Conference Proceedings. 2016;1765:020011.10.1063/1.4961903Search in Google Scholar

[244] Hu JZ, Jaegers NR, Hu MY, Mueller KT. In situ and ex situ NMR for battery research. J Phys. Condens Matter. 2018;30:463001.10.1088/1361-648X/aae5b8Search in Google Scholar PubMed

[245] Pecher O, Carretero-González J, Griffith KJ, Grey CP. Materials’ methods: NMR in battery research. Chem Mater. 2017;29:213–42.10.1021/acs.chemmater.6b03183Search in Google Scholar

[246] Griffin JM, Forse AC, Grey CP. Solid-state NMR studies of supercapacitors. Solid State Nucl Magn Reson. 2016;74–75:16–35.10.1016/j.ssnmr.2016.03.003Search in Google Scholar PubMed

[247] Richter JB, Eßbach C, Senkovska I, Kaskel S, Brunner E. Quantitative in situ 13C NMR studies of the electro-catalytic oxidation of ethanol. Chem Commun (Cambridge, England). 2019;55:6042–5.10.1039/C9CC02660FSearch in Google Scholar PubMed

Published Online: 2020-06-03

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0086/html
Scroll to top button