Startseite Coupling photoredox and biomimetic catalysis for the visible-light-driven oxygenation of organic compounds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Coupling photoredox and biomimetic catalysis for the visible-light-driven oxygenation of organic compounds

  • Bernd Mühldorf , Ulrich Lennert und Robert Wolf EMAIL logo
Veröffentlicht/Copyright: 10. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Recent advances in the development of coupled photoredox systems for the oxygenation of organic compounds are reviewed.

References

[1] Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, et al. Selective catalytic oxidation of C–H bonds with molecular oxygen. ChemCatChem. 2012;5:82–112. DOI: 10.1002/cctc.201200266Suche in Google Scholar

[2] Que L, Tolman W. Biologically inspired oxidation catalysis. Nature. 2008;455:333–40.10.1038/nature07371Suche in Google Scholar

[3] Meunier B, de Visser Samuël P, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev. 2004;104:3947–80. DOI: 10.1021/cr020443g.Suche in Google Scholar

[4] Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science. 2000;287:1615–22. DOI: 10.1126/science.287.5458.1615.Suche in Google Scholar

[5] Tshuva EY, Lippard SJ. Synthetic models for non-heme carboxylate-bridged diiron metalloproteins: strategies and tactics. Chem Rev. 2004;104:987–1012. DOI: 10.1021/cr020622y.Suche in Google Scholar

[6] Costas M, Mehn MP, Jensen MP, Que L. Dioxygen activation at mononuclear nonheme iron active sites: enzymes, models, and intermediates. Chem Rev. 2004;104:939–86. DOI: 10.1021/cr020628n.Suche in Google Scholar

[7] Abu-Omar Mahdi M, Loaiza A, Hontzeas N. Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem Rev. 2005;105:2227–52. DOI: 10.1021/cr040653o.Suche in Google Scholar

[8] Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, et al. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev. 2000;100:235–350. DOI: 10.1021/cr9900275.Suche in Google Scholar

[9] Bruijnincx PCA, Buurmans ILC, Gosiewska S, Moelands MAH, Lutz M, Spek AL, et al. Iron(II) complexes with bio-inspired N,N,O ligands as oxidation catalysts: olefin epoxidation and cis-dihydroxylation. Chem Eur J. 2008;14:1228–37. DOI: 10.1002/chem.200700573.Suche in Google Scholar

[10] Costas M, Chen K, Que L. Biomimetic nonheme iron catalysts for alkane hydroxylation. Coord Chem Rev. 2000;200-202:517–44. DOI: 10.1016/S0010-8545(00)00320-9.Suche in Google Scholar

[11] Chen G, Chen L, Ma L, Kwong H-K, Lau T-C. Photocatalytic oxidation of alkenes and alcohols in water by a manganese(V) nitrido complex. Chem Commun. 2016;52:9271–4. DOI: 10.1039/C6CC04173F.Suche in Google Scholar PubMed

[12] Fukuzumi S, Kishi T, Kotani H, Lee Y-M, Nam W. Highly efficient photocatalytic oxygenation reactions using water as an oxygen source. Nat Chem. 2010;3:38–41. DOI: 10.1038/nchem.905.Suche in Google Scholar PubMed

[13] Wu X, Yang X, Lee Y-M, Nam W, Sun L. A nonheme manganese(IV)–Oxo species generated in photocatalytic reaction using water as an oxygen source. Chem Commun. 2015;51:4013–6. DOI: 10.1039/C4CC10411K.Suche in Google Scholar PubMed

[14] Kotani H, Suenobu T, Lee Y-M, Nam W, Fukuzumi S. Photocatalytic generation of a non-heme oxoiron(IV) complex with water as an oxygen source. J Am Chem Soc. 2011;133:3249–51. DOI: 10.1021/ja109794p.Suche in Google Scholar PubMed

[15] Company A, Sabenya G, González-Béjar M, Gómez L, Blondin G, Jasniewski AJ, et al. Triggering the generation of an iron(IV)-Oxo compound and its reactivity toward sulfides by RuII photocatalysis. J Am Chem Soc. 2014;136:4624–33. DOI: 10.1021/ja412059c.Suche in Google Scholar PubMed PubMed Central

[16] Herrero C, Quaranta A, Ricoux R, Trehoux A, Mahammed A, Gross Z, et al. Oxidation catalysis via visible-light water activation of a [Ru(bpy)3]2+ Chromophore BSA–Metallocorrole couple. Dalton Trans. 2016;45:706–10. DOI: 10.1039/C5DT04158A.Suche in Google Scholar

[17] Chandra B, Singh KK, Gupta SS. Selective photocatalytic hydroxylation and epoxidation reactions by an iron complex using water as the oxygen source. Chem Sci. 2017;8:7545–51. DOI: 10.1039/C7SC02780J.Suche in Google Scholar

[18] Guengerich FP. Mechanisms of cytochrome P450 substrate oxidation: minireview. J Biochem Mol Toxic. 2007;21:163–8. DOI: 10.1002/jbt.20174.Suche in Google Scholar PubMed

[19] Koehntop KD, Emerson JP, Que L. The 2-His-1-Carboxylate facial triad: a versatile platform for dioxygen activation by mononuclear non-heme iron(II) enzymes. J Biol Inorg Chem. 2005;10:87–93. DOI: 10.1007/s00775-005-0624-x.Suche in Google Scholar PubMed

[20] Herrero C, Quaranta A, Sircoglou M, Sénéchal-David K, Baron A, Mustieles MI, et al. Successive light-induced two electron transfers in a Ru–Fe supramolecular assembly: from Ru–Fe(II)–OH2 to Ru–Fe(IV)–oxo. Chem Sci. 2015;6:2323–7. DOI: 10.1039/C5SC00024F.Suche in Google Scholar

[21] Schmaderer H, Hilgers P, Lechner R, König B. Photooxidation of benzyl alcohols with immobilized flavins. Adv Synth Catal. 2009;351:163–74. DOI: 10.1002/adsc.200800576.Suche in Google Scholar

[22] Svoboda J, Schmaderer H, König B. Thiourea-enhanced flavin photooxidation of benzyl alcohol. Chem Eur J. 2008;14:1854–65. DOI: 10.1002/chem.200701319.Suche in Google Scholar PubMed

[23] Cibulka R, Vasold R, König B. Catalytic photooxidation of 4-Methoxybenzyl alcohol with a Flavin-Zinc(II)-Cyclen complex. Chem Eur J. 2004;10:6223–31. DOI: 10.1002/chem.200400232.Suche in Google Scholar PubMed

[24] König B, Lechner R. Oxidation and deprotection of primary benzylamines by visible light flavin photocatalysis. Synthesis. 2010;2010:1712–8. DOI: 10.1055/s-0029-1218709.Suche in Google Scholar

[25] Lechner R, Kümmel S, König B. Visible light flavin photo-oxidation of methylbenzenes, styrenes and phenylacetic acids. Photochem Photobiol Sci. 2010;9:1367–7. DOI: 10.1039/c0pp00202j.Suche in Google Scholar PubMed

[26] Dad'ová J, Svobodová E, Sikorski M, König B, Cibulka R. Photooxidation of sulfides to sulfoxides mediated by Tetra-O-Acetylriboflavin and visible light. ChemCatChem. 2012;4:620–3. DOI: 10.1002/cctc.201100372.Suche in Google Scholar

[27] Mojr V, Svobodová E, Straková K, Neveselý T, Chudoba J, Dvořáková H, et al. Tailoring flavins for visible light photocatalysis: organocatalytic [2+2] cycloadditions mediated by a flavin derivative and visible light. Chem Commun. 2015;51:12036–9. DOI: 10.1039/C5CC01344E.Suche in Google Scholar PubMed

[28] Metternich JB, Artiukhin DG, Holland MC, von Bremen-Kühne M, Neugebauer J, Gilmour R. Photocatalytic E → Z isomerization of polarized alkenes inspired by the visual cycle: mechanistic dichotomy and origin of selectivity. J Org Chem. 2017;82:9955–77. DOI: 10.1021/acs.joc.7b01281.Suche in Google Scholar PubMed

[29] Fukuzumi S, Kuroda S, Tanaka T. Flavin analog-metal ion complexes acting as efficient photocatalysts in the oxidation of p-methylbenzyl alcohol by oxygen under irradiation with visible light. J Am Chem Soc. 1985;107:3020–7. DOI: 10.1021/ja00297a005.Suche in Google Scholar

[30] Fukuzumi S, Yasui K, Suenobu T, Ohkubo K, Fujitsuka M, Ito O. Efficient catalysis of rare-earth metal ions in photoinduced electron-transfer oxidation of benzyl alcohols by a flavin analogue. J Phys Chem A. 2001;105:10501–10. DOI: 10.1021/jp012709d.Suche in Google Scholar

[31] Mühldorf B, Wolf R. Photocatalytic benzylic C–H bond oxidation with a flavin scandium complex. Chem Commun. 2015;51:8425–8. DOI: 10.1039/C5CC00178A.Suche in Google Scholar

[32] Mühldorf B, Wolf Robert. C–H photooxygenation of alkyl benzenes catalyzed by Riboflavin tetraacetate and a non-heme iron catalyst. Angew Chem Int Ed. 2015;55:427–30. DOI: 10.1002/anie.201507170.Suche in Google Scholar

[33] Paschke J, Kirsch M, Korth H-G, de Groot H, Sustmann R. Catalase-like activity of a non-heme dibenzotetraaza[14]annulene−Fe(III) complex under physiological conditions. J Am Chem Soc. 2001;123:11099–100. DOI: 10.1021/ja015544v.Suche in Google Scholar

[34] Ghosh A, Mitchell DA, Chanda A, Ryabov AD, Popescu DL, Upham EC, et al. Catalase−peroxidase activity of iron(III)−TAML activators of hydrogen peroxide. J Am Chem Soc. 2008;130:15116–26. DOI: 10.1021/ja8043689.Suche in Google Scholar

[35] Klopstra M, Hage R, Kellogg RM, Feringa BL. Non-Heme iron catalysts for the benzylic oxidation: a parallel ligand screening approach. Tetrahedron Lett. 2003;44:4581–4. DOI: 10.1016/S0040-4039(03)00979-1.Suche in Google Scholar

[36] Tang G, Gong Z, Han W, Sun X. Visible light mediated aerobic photocatalytic activation of C–H bond by riboflavin tetraacetate and N-Hydroxysuccinimide. Tetrahedron Lett. 2018;59:658–62. DOI: 10.1016/j.tetlet.2018.01.011.Suche in Google Scholar

[37] Decker A, Solomon EI. Dioxygen activation by Copper, Heme and non-Heme iron enzymes: comparison of electronic structures and reactivities. Curr Opin Chem Biol. 2005;9:152–63. DOI: 10.1016/j.cbpa.2005.02.012.Suche in Google Scholar PubMed

[38] Iali W, Lanoe P-H, Torelli S, Jouvenot D, Loiseau F, Lebrun C, et al. A Ruthenium(II)-Copper(II) dyad for the photocatalytic oxygenation of organic substrates mediated by dioxygen activation. Angew Chem Int Ed. 2015;54:8415–9. DOI: 10.1002/anie.201501180.Suche in Google Scholar PubMed

[39] Punniyamurthy T, Velusamy S, Iqbal J. Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. Chem Rev. 2005;105:2329–64. DOI: 10.1021/cr050523v.Suche in Google Scholar PubMed

[40] Joergensen KA. Transition-metal-catalyzed epoxidations. Chem Rev. 1989;89:431–58. DOI: 10.1021/cr00093a001.Suche in Google Scholar

[41] Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Aerobic copper-catalyzed organic reactions. Chem Rev. 2013;113:6234–458. DOI: 10.1021/cr300527g.Suche in Google Scholar PubMed PubMed Central

[42] Chao D, Zhao M. Robust cooperative photo-oxidation of sulfides without sacrificial reagent under air using a dinuclear RuII-CuII assembly. ChemSusChem. 2017;10:3358–62. DOI: 10.1002/cssc.201700930.Suche in Google Scholar PubMed

[43] Chen W, Rein FN, Rocha RC. Homogeneous photocatalytic oxidation of alcohols by a chromophore-catalyst dyad of ruthenium complexes. Angew Chem Int Ed. 2009;48:9672–75. DOI: 10.1002/anie.200904756.Suche in Google Scholar PubMed

[44] Chen W, Rein FN, Scott BL, Rocha RC. Catalytic photooxidation of alcohols by an unsymmetrical Tetra(pyridyl)pyrazine-bridged dinuclear Ru complex. Chem Eur J. 2011;17:5595–604. DOI: 10.1002/chem.201002168.Suche in Google Scholar PubMed

[45] Farràs P, Maji S, Benet-Buchholz J, Llobet A. Synthesis, characterization, and reactivity of dyad ruthenium-based molecules for Light-Driven oxidation catalysis. Chem Eur J. 2013;19:7162–72. DOI: 10.1002/chem.201204381.Suche in Google Scholar PubMed

[46] Hamelin O, Guillo P, Loiseau F, Boissonnet M-F, Ménage S. A dyad as photocatalyst for light-driven sulfide oxygenation with water as the unique oxygen atom source. Inorg Chem. 2011;50:7952–4. DOI: 10.1021/ic201431z.Suche in Google Scholar PubMed

[47] Guillo P, Hamelin O, Batat P, Jonusauskas G, McClenaghan ND, Ménage S. Photocatalyzed sulfide oxygenation with water as the unique oxygen atom source. Inorg Chem. 2012;51:2222–30. DOI: 10.1021/ic2022159.Suche in Google Scholar PubMed

[48] Li T-T, Li F-M, Zhao W-L, Tian Y-H, Chen Y, Cai R, et al. Highly efficient and selective photocatalytic oxidation of sulfide by a chromophore -catalyst dyad of ruthenium-based complexes. Inorg Chem. 2014;54:183–91. DOI: 10.1021/ic5020972.Suche in Google Scholar PubMed

[49] Phungsripheng S, Kozawa K, Akita M, Inagaki A. Photocatalytic oxygenation of sulfide and alkenes by trinuclear ruthenium clusters. Inorg Chem. 2016;55:3750–8. DOI: 10.1021/acs.inorgchem.5b02518.Suche in Google Scholar PubMed

[50] Phungsripheng S, Akita M, Inagaki A. Substituent effect of the bridging ligand in the Trinuclear Ru complexes on photocatalytic oxygenation of a sulfide and alkenes. Inorg Chem. 2017;56:12996–3006. DOI: 10.1021/acs.inorgchem.7b01764.Suche in Google Scholar PubMed

[51] Chao D, Fu W-F. Facile synthesis of a ruthenium assembly and its application for light-driven oxidation of alcohols in water. Chem Commun. 2013;49:3872–2. DOI: 10.1039/C3CC00305A.Suche in Google Scholar

[52] Chao D, Fu W-F. Insight into highly selective photocatalytic oxidation of alcohols by a new Trinuclear ruthenium complex with visible light. Dalton Trans. 2014;43:306–10. DOI: 10.1039/C3DT52157E.Suche in Google Scholar

[53] Zhao H, van der Donk WA. Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol. 2003;14:583–9. DOI: 10.1016/j.copbio.2003.09.007.Suche in Google Scholar

[54] Zhao H, van der Donk WA. Recent developments in pyridine nucleotide regeneration. Curr Opin Biotechnol. 2003;14:421–6. DOI: 10.1016/S0958-1669(03)00094-6.Suche in Google Scholar

[55] Wichmann R, Vasic-Racki D. Cofactor regeneration at the lab scale. In: Kragl Udo, editor. Technology transfer in biotechnology advances in biochemical engineering/biotechnology. Berlin, Heidelberg: Springer, 2005:225–60. ISBN 978-3-540-22412-9, DOI: .10.1007/b98911Suche in Google Scholar PubMed

[56] Hollmann F, Hofstetter K, Schmid A. Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis. Trends Biotechnol. 2006;24:163–71. DOI: 10.1016/j.tibtech.2006.02.003.Suche in Google Scholar PubMed

[57] Ruinatscha R, Höllrigl V, Otto K, Schmid A. Productivity of selective electroenzymatic reduction and oxidation reactions: theoretical and practical considerations. Adv Synth Catal. 2006;348:2015–26. DOI: 10.1002/adsc.200600257 .Suche in Google Scholar

[58] Urlacher VB, Schmid RD. Recent advances in oxygenase-catalyzed biotransformations. Curr Opin Chem Biol. 2006;10:156–61. DOI: 10.1016/j.cbpa.2006.02.001.Suche in Google Scholar PubMed

[59] Hollmann F, Taglieber A, Schulz F, Reetz MT. A light-driven stereoselective biocatalytic oxidation. Angew Chem Int Ed. 2007;46:2903–6. DOI: 10.1002/anie.200605169.Suche in Google Scholar PubMed

[60] Frisell WR, Mackenzie CG. The photochemical oxidation of DPNH with riboflavin phosphate. Proc Natl Acad Sci USA. 1959;45:1568–72. DOI: 10.1073/pnas.45.11.1568.Suche in Google Scholar PubMed PubMed Central

[61] Massey V, Stankovich M, Hemmerich P. Light-mediated reduction of flavoproteins with flavins as catalysts. Biochemistry. 1978;17:1–8. DOI: 10.1021/bi00594a001.Suche in Google Scholar PubMed

[62] Taglieber A, Schulz F, Hollmann F, Rusek M, Reetz MT. Light-driven biocatalytic oxidation and reduction reactions: scope and limitations. ChemBioChem. 2008;9:565–72. DOI: 10.1002/cbic.200700435.Suche in Google Scholar PubMed

[63] Perez DI, Grau MM, Arends IWCE, Hollmann F. Visible light-driven and chloroperoxidase-catalyzed oxygenation reactions. Chem Commun. 2009;6848. DOI: 10.1039/B915078ASuche in Google Scholar

[64] Churakova E, Arends IWCE, Hollmann F. Increasing the productivity of peroxidase-catalyzed oxyfunctionalization: a case study on the potential of two-liquid-phase systems. ChemCatChem. 2012;5:565–8. DOI: 10.1002/cctc.201200490.Suche in Google Scholar

[65] Churakova E, Kluge M, Ullrich R, Arends I, Hofrichter M, Hollmann F. Specific photobiocatalytic oxyfunctionalization reactions. Angew Chem Int Ed. 2011;50:10716–9. DOI: 10.1002/anie.201105308.Suche in Google Scholar PubMed

[66] Zhang W, Fernández-Fueyo E, Ni Y, van Schie M, Gacs J, Renirie R, et al. Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations. Nat Catal. 2017;1:55–62. DOI: 10.1038/s41929-017-0001-5.Suche in Google Scholar PubMed PubMed Central

[67] Marzo L, Pagire SK, Reiser O, König B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed. 2018;57:10034–72.10.1002/anie.201709766.Suche in Google Scholar PubMed

[68] Prier CK, Rankic DA, MacMillan DWC. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev. 2013;113:5322–63. DOI: 10.1021/cr300503r.(a) .Suche in Google Scholar PubMed PubMed Central

[69] Romero NA, Nicewicz DA. Organic photoredox catalysis. Chem Rev. 2016;116:10075–166.10.1021/acs.chemrev.6b00057.Suche in Google Scholar PubMed

[70] Marzo L, Pagire SK, Reiser O, König B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew Chem Int Ed. 2018;57:10034–72.10.1002/anie.201709766.Suche in Google Scholar

[71] Brasholz M. “Super-Reducing” photocatalysis: consecutive energy and electron transfers with polycyclic aromatic hydrocarbons. Angew Chem Int Ed. 2017;56:10280–1. DOI:10.1002/anie.201704763.Suche in Google Scholar PubMed

[72] Hering T, Mühldorf B, Wolf R, König B. Halogenase-inspired oxidative chlorination using flavin photocatalysis. Angew Chem Int Ed. 2016;55:5342–5. DOI: 10.1002/anie.201600783.Suche in Google Scholar PubMed PubMed Central

[73] Seel CJ, Králík A, Hacker M, Frank A, König B, Gulder T. Atom-economic electron donors for photobiocatalytic halogenations. ChemCatChem 2018. DOI: 10.1002/cctc.201800886.Suche in Google Scholar

Published Online: 2018-10-10

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/psr-2018-0030/html
Button zum nach oben scrollen