Abstract
Among the electrochemical energy storage systems, rechargeable lithium batteries are considered very promising candidates for the next generation power sources because of their high gravimetric and volumetric energy density with respect to other cell chemistries. The lithium-ion battery technology is based on the use of electrode materials able to reversibly intercalate lithium cations, which are continuously transferred between two host structures (negative and positive electrodes) during the charge and discharge processes. Commercial lithium-ion batteries commonly use liquid electrolytes based on suitable lithium salts (solute) and organic compounds (solvents). The latter, volatile and flammable, represent serious concerns for the safety of the electrochemical devices, this so far preventing their large diffusion in applications as automotive, storage from renewable sources, smart grids.
One of the most appealing approaches is the partial or total replacement of the organic solvents with safer, less hazardous, electrolyte components. Here, a concise survey of ones of the most investigated types of alternative electrolyte components, proposed for safer and more reliable rechargeable lithium batteries, is reported.
Graphical Abstract:

References
[1] Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.10.1038/35104644Search in Google Scholar PubMed
[2] Pistoia G., editor(s). Lithium batteries, new materials, developments and perspectives, Vol. 5. Amsterdam: Industrial Chemistry Library, Elsevier, 1994Search in Google Scholar
[3] Scrosati B. Challenge of portable power. Nature. 1995;373:557–8.10.1038/373557a0Search in Google Scholar
[4] Lex-Balducci A, Henderson WA, Passerini S. Electrolytes for lithium batteries. In: Yuan J, Liu X, Zhang H, editor(s). Lithium-ion batteries advanced materials and technologies. CRC Press. ISBN 978-1-4398-4128-0, eBook ISBN 978-1-4398-4129-7 2011:147–96.Search in Google Scholar
[5] Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158:R1–25.10.1149/1.3515880Search in Google Scholar
[6] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113:81–100.10.1016/S0378-7753(02)00488-3Search in Google Scholar
[7] Yang H, Amiruddin S, Bang HJ, Sun YK, Prakash J. A review of Li-ion cell chemistries and their potential use in hybrid electric vehicles. J Ind Eng Chem. 2006;12:12–38.Search in Google Scholar
[8] Abraham DP, Roth EP, Kostecky R, McCarthy K, MacLaren S, Doughty DH. Diagnostic examination of thermally abused high-power lithium-ion cells. J Power Sources. 2006;161:648–57.10.1016/j.jpowsour.2006.04.088Search in Google Scholar
[9] Aurbach D, Gofer Y, Ben-Zion M, Aped P. The behaviour of lithium electrodes in propylene and ethylene carbonate: the major factors that influence Li cycling efficiency. J Electroanal Chem. 1992;339:451–71.10.1016/0022-0728(92)80467-ISearch in Google Scholar
[10] Aurbach D, Weissman I, Zaban A, Chusid O. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim Acta. 1994;39:51–71.10.1016/0013-4686(94)85010-0Search in Google Scholar
[11] Osaka T, Momma T, Matsumoto Y, Uchida Y. Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J Electrochem Soc. 1997;144:1709–13.10.1149/1.1837665Search in Google Scholar
[12] Van Schalkwijk WA, Scrosati B. Advanced in lithium-ion batteries. New York: Kluwer Academic/Plenum Publisher, 2002.10.1007/b113788Search in Google Scholar
[13] Nazri GA, Pistoia G. Lithium batteries. Boston: Kluwer Academic/Plenum Publisher, 2004.10.1007/978-0-387-92675-9Search in Google Scholar
[14] Dudlet JT, Wilkinson DP, Thomas G, LeVae R, Woo S, Blom H, et al. Conductivity of electrolytes for rechargeable lithium batteries. In: Second International Meeting of Lithium Batteries (IMLB) 1990.Search in Google Scholar
[15] El Ouatani L, Dedryve`Ire R, Siret C, Biensan P, Gonbeau D. Effect of vinylene carbonate additive in li-ion batteries: comparison of LiCoO2 ∕ C, LiFePO4 ∕ C, and LiCoO4 ∕ Li4Ti5O12 systems. J Electrochem Soc. 2009;156:A468–77.10.1149/1.3111891Search in Google Scholar
[16] Xiao A, Yang L, Lucht B. Thermal reactions of LiPF6 with added LiBOB. Electrochem Solid State Letters. 2007;10:A241–4.10.1149/1.2772084Search in Google Scholar
[17] Xu W, Shusterman AJ, Marzke R, Angell CA. LiMOB, an unsymmetrical nonaromatic orthoborate salt for nonaqueous solution electrochemical applications. J Electrochem Soc. 2004;151:A632–8.10.1149/1.1651528Search in Google Scholar
[18] Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M, Ignat’ev N, et al. Lithium fluorophosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J Power Sources. 2001;97:557–60.10.1016/S0378-7753(01)00640-1Search in Google Scholar
[19] Gnanaraj JS, Levi MD, Gofer Y, Aurbach D, Schmidt M. LiPF3(CF2CF3)3: a salt for rechargeable lithium ion batteries. J Electrochem Soc. 2003;150:A445–54.10.1149/1.1557965Search in Google Scholar
[20] Gnanaraj JS, Zinigrad E, Asraf L, Sprecher M, Gottlieb HE, Geissler W, et al. On the use of LiPF3(CF2CF3)3 (LiFAP) solutions for Li-ion batteries. Electrochem Thermal Studies Electrochem Comm. 2003;5:946–51.10.1016/j.elecom.2003.08.020Search in Google Scholar
[21] Barthel J, Buestrich R, Carl E, Gores HJ. new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. III. Synthesis and properties of some lithium organo borates. J Electrochem Soc. 1996;143:3572–5.10.1149/1.1837254Search in Google Scholar
[22] Barthel J, Schmid A, Gores HJ, New A. Class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. V. synthesis and properties of lithium Bis[2,3-pyridinediolato(2−)-O,O′]borate. J Electrochem Soc. 2000;147:21–4.10.1149/1.1393138Search in Google Scholar
[23] Xu W, Angell CA. Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions. Electrochem Solid State Letters. 2001;4:E1–4.10.1149/1.1344281Search in Google Scholar
[24] Handa M, Suzuki M, Suzuki J, Kanematsu H, Sasaki Y. A new lithium salt with a chelate complex of phosphorus for lithium battery electrolytes. J Electrochem Soc. 1999;2:60–2.10.1149/1.1390734Search in Google Scholar
[25] Eberwein M, Schmid A, Schmidt M, Zabel M, Burgemeister T, Barthel J, et al. Synthesis and electrochemical properties of some lithium chelatophosphates. J Electrochem Soc. 2003;150:A994–9.10.1149/1.1580821Search in Google Scholar
[26] Barbarich TJ, Driscoll PF. A lithium salt of a lewis acid-base complex of imidazolide for lithium-ion batteries. Electrochem Solid State Lett. 2003;6:A113–6.10.1149/1.1568831Search in Google Scholar
[27] Barbarich TJ, Driscoll PF, Izquierdo S, Zakharov LN, Incarvito CD, Rheingold AL. New family of lithium salts for highly conductive nonaqueous electrolytes. Inorg Chem. 2004;43:7764–73.10.1021/ic040070xSearch in Google Scholar PubMed
[28] Xu K, Zhang S, Jow TR, Xu W, Angell CA. LiBOB as salt for lithium-ion batteries: a possible solution for high temperature operation. Electrochem Solid-State Lett. 2002;5:A26–9.10.1149/1.1426042Search in Google Scholar
[29] Zhang SS, Xu K, Jow TR. An improved electrolyte for the LiFePO4 working cathodes in a wide temperature range. J.Power Sources. 2006;159:702–7.10.1016/j.jpowsour.2005.11.042Search in Google Scholar
[30] Amine K, Liu J, Kang S, Belharouak I, Hyung Y, Vissers D, et al. Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. J Power Sources. 2004;129:14–9.10.1016/j.jpowsour.2003.11.007Search in Google Scholar
[31] Xu K. Tailoring electrolyte composition for LiBOB. J Electrochem Soc. 2008;155:A733–8.10.1149/1.2961055Search in Google Scholar
[32] Xu K, Deveney B, Nechev K, Lam Y, Jow TR. Evaluating LiBOB/lactone electrolytes in large-format lithium-ion cells based on nickelate and iron phosphate. J Electrochem Soc. 2008;155:A959–64.10.1149/1.2990708Search in Google Scholar
[33] Xu K, Zhang SS, Allen JL, Jow TR. Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate. J Electrochem Soc. 2002;149:A1079–82.10.1149/1.1490356Search in Google Scholar
[34] Shim EG, Nam TH, Kim JG, Kim HS, Moon SI. Effect of the concentration of diphenyloctyl phosphate as a flame-retarding additive on the electrochemical performance of lithium-ion batteries. Electrochim Acta. 2009;54:2276–83.10.1016/j.electacta.2008.10.037Search in Google Scholar
[35] Feng JK, Sun XJ, Ai XP, Cao YL, Yang HX. Dimethyl methyl phosphate: a new nonflammable electrolyte solvent for lithium-ion batteries. J Power Sources. 2008;184:570–3.10.1016/j.jpowsour.2008.02.006Search in Google Scholar
[36] Dalavi S, Xu MQ, Ravdel B, Zhou L, Lucht BL. Nonflammable electrolytes for lithium-ion batteries containing dimethyl methylphosphonate. J Electrochem Soc. 2010;157:A1113–20.10.1149/1.3473828Search in Google Scholar
[37] Wu L, Song ZP, Liu LS, Guo XF, Kong LB, Zhan H, et al. A new phosphate-based nonflammable electrolyte solvent for Li-ion batteries. J Power Sources. 2009;188:570–3.10.1016/j.jpowsour.2008.12.070Search in Google Scholar
[38] Zhang SS, Xu K, Jow TR. Tris (2, 2, 2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries. J Power Sources. 2003;113:166–72.10.1016/S0378-7753(02)00537-2Search in Google Scholar
[39] Tsujikawa T, Yabuta K, Matsushita T, Matsushima T, Hayashi K, Arakawa M. Characteristics of lithium-ion battery with non-flammable electrolyte. J Power Sources. 2009;189:429–34.10.1016/j.jpowsour.2009.02.010Search in Google Scholar
[40] Arai J. A novel non-flammable electrolyte containing methyl nonafluorobutyl ether for lithium secondary batteries. J Appl Electrochem. 2002;32:1071–9.10.1023/A:1021231514663Search in Google Scholar
[41] Naoi K, Iwama E, Honda Y, Shimodate F. Discharge behavior and rate performance of lithium-ion batteries in nonflammable hydrofluoroethers (II). J Electrochem Soc. 2010;157:A190–5.10.1149/1.3265475Search in Google Scholar
[42] Arai J. Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries. J Electrochem Soc. 2003;150:A219–28.10.1149/1.1538224Search in Google Scholar
[43] Tanaka T, Doi T, Okada S, Yamaki JI. Effects of salts in methyl difluoroacetate-based electrolytes on their thermal stability in lithium-ion batteries. Fuel Cells. 2009;9:269–72.10.1002/fuce.200800085Search in Google Scholar
[44] Arora P, Zhang Z. Battery separators. Chem Rev. 2004;104:4419–62.10.1021/cr020738uSearch in Google Scholar PubMed
[45] Stephan AM. Review on gel polymer electrolytes for lithium batteries. Eur Polym J. 2006;42:21–42.10.1016/j.eurpolymj.2005.09.017Search in Google Scholar
[46] Wang YJ, Kim D. Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2nanocomposite polymer electrolytes. Electrochim Acta. 2007;52:3181–9.10.1016/j.electacta.2006.09.070Search in Google Scholar
[47] Gentili V, Panero S, Reale P, Scrosati B. Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. J Power Sources. 2007;170:185–90.10.1016/j.jpowsour.2007.04.008Search in Google Scholar
[48] Raghavan P, Zhao XH, Kim JK, Manuel J, Chauhan GS, Ahn JH, et al. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co hexafluoropropylene) with nano-sized ceramic fillers. Electrochim Acta. 2008;54:228–34.10.1016/j.electacta.2008.08.007Search in Google Scholar
[49] Li ZH, Zhang HP, Zhang P, Wu YP, Zhou XD. Macroporous nanocomposite polymer electrolyte for lithium-ion batteries. J Power Sources. 2008;184:562–5.10.1016/j.jpowsour.2008.02.068Search in Google Scholar
[50] Kim JK, Cheruvally G, Li X, Ahn JH, Kim KW, Ahn HJ. Preparation and electrochemical characterization of electrospun, microporous membrane-based composite polymer electrolytes for lithium batteries. J Power Sources. 2008;178:815–20.10.1016/j.jpowsour.2007.08.063Search in Google Scholar
[51] Miao RY, Liu BW, Zhu ZZ, Liu Y, Li JL, Wang XD, et al. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J Power Sources. 2008;184:420–6.10.1016/j.jpowsour.2008.03.045Search in Google Scholar
[52] Ren Z, Sun KN, Liu YY, Zhou XL, Zhang NQ, Zhu XD. Polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) with crosslinked poly(ethylene glycol) for lithium batteries. Solid State Ionics. 2009;180:693–7.10.1016/j.ssi.2009.02.033Search in Google Scholar
[53] Ding YH, Di W, Jiang Y, Xu F, Long ZL, Ren FM, et al. The morphological evolution, mechanical properties and ionic conductivities of electrospinning P(VdF-HFP) membranes at various temperatures. Ionics (Kiel). 2009;15:731–4.10.1007/s11581-009-0326-4Search in Google Scholar
[54] Cui ZY, Xu YY, Zhu LP, Wang JY, Zhu BK. Investigation on PVDF-HFP microporous membranes prepared by TIPS process and their application as polymer electrolytes for lithium ion batteries. Ionics (Kiel). 2009;15:469–76.10.1007/s11581-008-0253-9Search in Google Scholar
[55] Jiang Z, Carroll B, Abraham KM. Studies of some poly(vinylidene fluoride) electrolytes. Electrochim Acta. 1997;42:2667–77.10.1016/S0013-4686(97)00005-4Search in Google Scholar
[56] Li J. Exchange coupling in P(VdF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys Rev Lett. 2003;90:217601.10.1103/PhysRevLett.90.217601Search in Google Scholar
[57] Appetecchi GB, Croce F, De Paolis A, Scrosati B. A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries. J Electroanal Chem. 1999;463:248–52.10.1016/S0022-0728(98)00412-4Search in Google Scholar
[58] Djian D, Alloin F, Martinet S, Lignier H. Macroporous poly(vinylidene fluoride) membrane as a separator for lithium-ion batteries with high charge rate capacity. J Power Sources. 2009;187:575–80.10.1016/j.jpowsour.2008.11.027Search in Google Scholar
[59] Costa CM, Rodrigues LC, Sencadas V, Silva MM, Rocha JG, Lanceros-Mendez S. Effect of degree of porosity on the properties of poly(vinylidene fluoride–trifluorethylene) for Li-ion battery separators. J Membr Sci. 2012;407:193–201.10.1016/j.memsci.2012.03.044Search in Google Scholar
[60] Saunier J, Alloin F, Sanchez JY, Barrie`Re B. Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion batteries. I. Swelling behavior of dense membranes with respect to a liquid electrolyte-Characterization of the swelling equilibrium. J Polym Sci Part B: Polym Phys. 2004;42:532–43.10.1002/polb.10730Search in Google Scholar
[61] Saunier J, Alloin F, Sanchez JY, Maniguet L. Plasticized microporous poly(vinylidene fluoride) separators for lithium-ion batteries. III. Gel properties and irreversible modifications of poly(vinylidene fluoride) membranes under swelling in liquid electrolytes. J Polym Sci Part B: Polym Phys. 2004;42:2308–17.10.1002/polb.20099Search in Google Scholar
[62] Nakajima T, Groult H. Fluorinated materials for energy conversion. Amsterdam: Elsevier Science, 2005.Search in Google Scholar
[63] Costa CM, Silva MM, Lanceros-Mendez S. Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv. 2013;3:11404–17.10.1039/c3ra40732bSearch in Google Scholar
[64] Costa CM, Sencadas V, Rocha JG, Silva MM, Lanceros-Mendez S. Evaluation of the main processing parameters influencing the performance of poly(vinylidene fluoride-trifluoroethylene) lithium-ion battery separators. J Solid State Electrochem. 2013;17:861–70.10.1007/s10008-012-1928-8Search in Google Scholar
[65] Costa CM, Rodrigues LC, Sencadas V, Silva MM, Lanceros-Mendez S. Effect of the microsctructure and lithium-ion content in poly[(vinylidene fluoride)-co-trifluoroethylene]/lithium perchlorate trihydrate composite membranes for battery applications. Solid State Ionics. 2012;217:19–26.10.1016/j.ssi.2012.04.011Search in Google Scholar
[66] Costa CM, Nunes-Pereira J, Rodrigues LC, Silva MM, Ribelles JLG, Lanceros-Mendez S. Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications. Electrochim Acta. 2013;88:473–6.10.1016/j.electacta.2012.10.098Search in Google Scholar
[67] Costa CM, Gomez Ribelles JL, Lanceros-Mendez S, Appetecchi GB, Scrosati B. Novel poly(vinylidenefluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. J Power Sources. 2014;245:779–86.10.1016/j.jpowsour.2013.06.151Search in Google Scholar
[68] Ren Z, Liu YY, Sun KN, Zhou XL, Zhang NQ. A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim Acta. 2009;54:1888–92.10.1016/j.electacta.2008.10.011Search in Google Scholar
[69] Raghavan P, Zhao X, Shin C, Baek DH, Choi JW, Manuel J, et al. Preparation and electrochemical characterization of polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/polyacrylonitrile blend/composite membranes for lithium batteries. J Power Sources. 2010;195:6088–94.10.1016/j.jpowsour.2009.11.098Search in Google Scholar
[70] Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, et al. Development of electrospun PVdF-PAN membrane based polymer electrolytes for lithium batteries. J Membr Sci. 2008;325:683–90.10.1016/j.memsci.2008.08.047Search in Google Scholar
[71] Fergus JW. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J Power Sources. 2010;195:4554–69.10.1016/j.jpowsour.2010.01.076Search in Google Scholar
[72] Choi BK, Shin KH, Kim YW. Lithium ion conduction in PEO–salt electrolytes gelled with PAN. Solid State Ionics. 1998;113:123–7.10.1016/S0167-2738(98)00282-3Search in Google Scholar
[73] Kang Y, Kim HJ, Kim E, Oh B, Cho JH. Photocured PEO-based solid polymer electrolyte and its application to lithium–polymer batteries. J Power Sources. 2001;92:255–9.10.1016/S0378-7753(00)00546-2Search in Google Scholar
[74] Aihara Y, Appetecchi GB, Scrosati B. A new concept for the formation of homogeneous gel-type polymer electrolytes. J Electrochem Soc. 2002;149:A849–54.10.1149/1.1481524Search in Google Scholar
[75] Aihara Y, Appetecchi GB, Scrosati B, Hayamizu K. Investigation on the ionic conduction mechanism of composite poly(ethyleneoxide) PEO-based polymer gel electrolytes including nano-size SiO2. J Phys Chem C. 2002;4:3443–7.10.1039/b201991bSearch in Google Scholar
[76] Appetecchi GB, Aihara Y, Scrosati B. Investigation of swelling phenomena in Poly(Ethyleneoxide)-based polymer electrolytes. III. Preliminary battery tests. J Electrochem Soc. 2003;150:A301–5.10.1149/1.1544633Search in Google Scholar
[77] Appetecchi GB, Aihara Y, Scrosati B. Investigation of swelling phenomena in PEO-based polymer electrolytes. II. Chemical and electrochemical characterization. Solid State Ionics. 2004;170:63–72.10.1016/j.ssi.2003.12.019Search in Google Scholar
[78] Croce F, Gerace F, Dautzenberg G, Passerini S, Appetecchi GB, Scrosati B. Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta. 1994;39:2187–94.10.1016/0013-4686(94)E0167-XSearch in Google Scholar
[79] Appetecchi GB, Croce F, Romagnoli P, Scrosati B, Heider U, Oesten R. High-performance gel-type lithium electrolyte membranes. Electrochem Commun. 1999;1:83–6.10.1016/S1388-2481(99)00011-9Search in Google Scholar
[80] Appetecchi GB, Romagnoli P, Scrosati B. Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries. Electrochem Commun. 2001;3:281–4.10.1016/S1388-2481(01)00137-0Search in Google Scholar
[81] Appetecchi GB, Croce F, Scrosati B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta. 1995;40:991–7.10.1016/0013-4686(94)00345-2Search in Google Scholar
[82] Cazzanelli E, Mariotto G, Croce F, Appetecchi GB, Scrosati B. Study of ion-molecule interaction in poly(methylmethacrylate)-based gel electrolytes by raman spectroscopy. Electrochim Acta. 1995;40:2379–82.10.1016/0013-4686(95)00198-NSearch in Google Scholar
[83] Cazzanelli E, Mariotto G, Appetecchi GB, Croce F. Raman study of ion-molecules interaction in poly(methylmethacrylate)-based gel electrolytes. Ionics (Kiel). 1996;2:81–7.10.1007/BF02375799Search in Google Scholar
[84] Appetecchi GB, Croce F, Scrosati B. High performance electrolyte membranes for plastic lithium batteries. J Power Sources. 1997;66:77–82.10.1016/S0378-7753(96)02484-6Search in Google Scholar
[85] Wieczorek W, Stevens J. Impedance spectroscopy and phase structure of polyether−poly(methyl methacrylate)−LiCF3SO3 blend-based electrolytes. J Phys Chem B. 1997;101:1529–34.10.1021/jp962517wSearch in Google Scholar
[86] Willemse RC, Posthuma De Boer A, Van Dam J, Gotsis AD. Co-continuous morphologies in polymer blends: a new model. Polymer (Guildf). 1998;39:5879–87.10.1016/S0032-3861(97)10200-2Search in Google Scholar
[87] Willemse RC, Posthuma De Boer A, Van Dam J, Gotsis AD. Co-continuous morphologies in polymer blends: the influence of the interfacial tension. Polymer (Guildf). 1999;40:827–34.10.1016/S0032-3861(98)00307-3Search in Google Scholar
[88] Jordhamo GM, Manson JA, Sperling LH. Phase continuity and inversion in polymer blends and simultaneous interpenetrating networks. Polym Eng Sci. 1986;26:517–24.10.1002/pen.760260802Search in Google Scholar
[89] Passerini S, Alessandrini F, Momma T, Ohta H, Ito H, Osaka T. Co-continuous polymer blend based lithium-ion conducting gel-polymer electrolytes. Electrochem Solid-State Lett. 2001;4:A124–6.10.1149/1.1382691Search in Google Scholar
[90] Momma T, Ito H, Nara H, Mukaibo H, Passerini S, Osaka T. Characteristics of interpenetrated polymer network system made of polyethylene oxide-LiBF4 complex and polystyrene as the electrolyte for lithium secondary batteries. Electrochem. 2003;71:1182–6.10.5796/electrochemistry.71.1182Search in Google Scholar
[91] Nara H, Momma T, Osaka T. Feasibility of an interpenetrated polymer network system made of di-block copolymer composed of polyethylene oxide and polystyrene as the gel electrolyte for lithium secondary batteries. Electrochem. 2008;76:276–81.10.5796/electrochemistry.76.276Search in Google Scholar
[92] Appetecchi GB, Alessandrini F, Passerini S, Caporiccio G, Boutevin B, Guida-Pietra Santa F. Novel polymeric systems for lithium-ion batteries gel electrolytes. I. cross-linked polyFluoroSilicone. Electrochim Acta. 2004;50:149–50.10.1016/S0013-4686(04)00836-9Search in Google Scholar
[93] Appetecchi GB, Alessandrini F, Passerini S, Caporiccio G, Boutevin B, Guida-Pietra Santa F. Novel polymeric systems for lithium ion batteries gel electrolytes. II. hybrid cross-linked poly(fluorosilicone-ethyleneoxide). Electrochim Acta. 2005;50:4396–404.10.1016/j.electacta.2005.02.003Search in Google Scholar
[94] Rogers JRD, Seddon KR Ionic liquids: industrial application to green chemistry ACS Symposium Series, 818 American Chemical Society. Washington, 2002.10.1021/bk-2002-0818Search in Google Scholar
[95] Xu W, Cooper E, Angell AA. Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B. 2003;107:6170–8.10.1021/jp0275894Search in Google Scholar
[96] Zhou ZB, Matsumoto H, Tatsumi K. Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J. 2005;11:752–66.10.1002/chem.200400817Search in Google Scholar
[97] Ohno H, editor. Electrochemical aspects of ionic liquids. Hoboken, NJ: John Wiley & Sons Inc, 2005.10.1002/0471762512Search in Google Scholar
[98] Appetecchi GB, Montanino M, Passerini S. Ionic liquid-based electrolytes for high-energy lithium batteries. In Ionic liquids: science and applications. ACS Symposium Series 1117. In: Visser AE, Bridges NJ, Rogers RD, editors, American Chemical Society. Washington, DC, USA: Oxford University Press, Inc., 2013: 67–128.Search in Google Scholar
[99] Nakagawa H, Izuchi S, Kunawa K, Nukuda T, Aihara Y. Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J Electrochem Soc. 2003;150:A695–700.10.1149/1.1568939Search in Google Scholar
[100] Bhatt AI, Maycbe I, Volkovich VA, Hetherington ME, Lewin B, Thied RC, et al. Group 15 quaternary alkyl bistriflimides: ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes. J Chem Soc Dalton Trans. 2002;4532–4.10.1039/b208968hSearch in Google Scholar
[101] Panozzo S, Armand M, Stephan O. Light-emitting electrochemical cells using a molten delocalized salt. Appl Phys Lett. 2002;80:679–81.10.1063/1.1436534Search in Google Scholar
[102] Wang P, Zakeeruddin SM, Exnar I, Gratzel M. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun. 2002;2972–3.10.1039/B209322GSearch in Google Scholar
[103] Fuller J, Breda AC, Carlin RT. Ionic liquid–polymer gel electrolytes from hydrophilic and hydrophobic ionic liquids. J Electroanal Chem. 1998;459:29–34.10.1016/S0022-0728(98)00285-XSearch in Google Scholar
[104] Noda A, Susan MABH, Kudo K, Mitsushima S, Hayamizu K, Watanabe M. Brønsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. J Phys Chem B. 2003;107:4024–33.10.1021/jp022347pSearch in Google Scholar
[105] Balducci A, Henderson WA, Mastragostino M, Passerini S, Simon P, Soavi F. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim Acta. 2005;50:2233–7.10.1016/j.electacta.2004.10.006Search in Google Scholar
[106] Appetecchi GB, Montanino M, Carewska M, Moreno M, Alessandrini F, Passerini S. Chemical-physical properties of bis(perfluoroalkylsulfonyl)imide anion-based ionic liquids. Electrochim Acta. 2011;56:1300–7.10.1016/j.electacta.2010.10.023Search in Google Scholar
[107] Appetecchi GB, Montanino M, Carewska M, Alessandrini F, Passerini S. LiFSI-PYR1AFSI binary electrolyte mixture for lithium batteries. ECS Trans. 2010;25:49–60.10.1149/MA2009-02/8/518Search in Google Scholar
[108] Appetecchi GB, D’Annibale A, Santilli C, Genova E, Lombardo L, Navarra MA, et al. Novel functionalized ionic liquid with a sulfur atom in the aliphatic side chain of the pyrrolidinium cation. Electrochem Comm. 2016;63:26–9.10.1016/j.elecom.2015.12.009Search in Google Scholar
[109] Dearden JC. The QSAR prediction of melting point, a property of environmental relevance. Sci Total Environ. 1991;109:59–68.10.1016/0048-9697(91)90170-JSearch in Google Scholar PubMed
[110] Zhou ZB, Matsumoto H, Tatsumi K. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem Eur J. 2006;12:2196–212.10.1002/chem.200500930Search in Google Scholar PubMed
[111] Koch VR, Nanjundiah C, Appetecchi GB, Scrosati B. The interfacial stability of Li with two new solvent-free ionic liquids;1,2 dimethyl-3-propylimidazolium imide and methide. J Electrochem Soc. 1995;142:L116–8.10.1149/1.2044332Search in Google Scholar
[112] Carlin RT, Fuller J U.S. Patent 5,552,238 issued on September 3, 1996.Search in Google Scholar
[113] Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem. 1996;35:1168–78.10.1021/ic951325xSearch in Google Scholar PubMed
[114] Sun J, Forsyth M, MacFarlane DR Room-temperature molten salts based on the quaternary ammonium ion. J Phys Chem B. 1998;102:8858–64.10.1021/jp981159pSearch in Google Scholar
[115] MacFarlane DR, Huang J, Forsyth M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature. 1999;402:792–4.10.1038/45514Search in Google Scholar
[116] MacFarlane DR, Meakin P, Sun J, Amini N, Forsyth M. Pyrrolidinium imides: a new family of molten salts and conductive plastic crystal phases. J Phys Chem B. 1999;103:4164–70.10.1021/jp984145sSearch in Google Scholar
[117] Howlett PC, MacFarlane DR, Hollenkamp AF. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem Solid-State Lett. 2004;7:A97–101.10.1149/1.1664051Search in Google Scholar
[118] Shin JH, Henderson WA, Passerini S. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun. 2003;5:1016–20.10.1016/j.elecom.2003.09.017Search in Google Scholar
[119] Shin JH, Henderson WA, Passerini S. An elegant fix for polymer electrolytes. Electrochem Solid-State Lett. 2005;8:A125–7.10.1149/1.1850387Search in Google Scholar
[120] Shin JH, Henderson WA, Passerini S. PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-polymer electrolyte batteries. J Electrochem Soc. 2005;152:A978–83.10.1149/1.1890701Search in Google Scholar
[121] Henderson WA, Passerini S. Phase behavior of ionic liquid−LiX mixtures: pyrrolidinium cations and TFSI-anions. Chem Mater. 2004;16:2881–5.10.1021/cm049942jSearch in Google Scholar
[122] Matsumoto H, Sakaebe H, Tatsumi K. Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. J Power Sources. 2005;146:45–50.10.1016/j.jpowsour.2005.03.103Search in Google Scholar
[123] Zhou Q, Henderson WA, Appetecchi GB, Montanino M, Passerini S. Physical and electrochemical properties of N-Alkyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide ionic liquids: PY13FSI and PY14FSI. J Phys Chem B. 2008;112:13577–80.10.1021/jp805419fSearch in Google Scholar PubMed
[124] Paillard E, Zhou Q, Henderson WA, Appetecchi GB, Montanino M, Passerini S. Electrochemical and physicochemical properties of PY14FSI-based electrolytes with LiFSI. J Electrochem Soc. 2009;156:A891–5.10.1149/1.3208048Search in Google Scholar
[125] Serra Moreno J, Deguchi Y, Panero S, Scrosati B, Ohno H, Simonetti E, et al. High performance ionic liquid electrolytes for lithium battery systems. Electrochim Acta. 2016;191:624–30.10.1016/j.electacta.2016.01.119Search in Google Scholar
[126] Kim GT, Appetecchi GB, Montanino M, Alessandrini F, Passerini S. Long-term cyclability of lithium metal electrodes in ionic liquid-based electrolyte at room temperature. ECS Trans. 2010;25:127–38.10.1149/1.3393847Search in Google Scholar
[127] Madherna M, Reiter J, Moskon J, Dominko R. Lithium bis(fluorosulfonyl)imide–PYR14TFSI ionic liquid electrolyte compatible with graphite. J Power Sources. 2011;196:7700–6.10.1016/j.jpowsour.2011.04.033Search in Google Scholar
[128] An Y, Zuo P, Cheng X, Liao L, Yin G. Preparation and properties of ionic-liquid mixed solutions as a safety electrolyte for lithium ion batteries. Int J Electrochem Sci. 2011;6:2398–410.Search in Google Scholar
[129] Conte L, Gambaretto G, Caporiccio G, Alessandrini F, Passerini S. Perfluoroalkanesulfonylimides and their lithium salts: synthesis and characterisation of intermediates and target compounds. J Fluorine Chem. 2004;125:243–52.10.1016/j.jfluchem.2003.07.003Search in Google Scholar
[130] Toulgoat F, Langlois BR, Medebielle M, Sanchez JY. An efficient preparation of new sulfonyl fluorides and lithium sulfonates. J Org Chem. 2007;72:9046–52.10.1021/jo701318nSearch in Google Scholar PubMed
[131] Triolo A, Russina O, Fazio B, Appetecchi GB, Carewska M, Passerini S. Nanoscale organization in piperidinium-based room temperature ionic liquids. J. Chem Phys. 2009;130:164521–6.10.1063/1.3119977Search in Google Scholar PubMed
[132] Russina O, Lo Celso F, Di Michiel M, Passerini S, Appetecchi GB, Castiglione F, et al. Evidences of fluorinated nano-domains in room temperature ionic liquids with perfluoroalkylsulfonylimide anions. Faraday Discussion. 2013;167:499–513.10.1039/c3fd00056gSearch in Google Scholar
[133] Cooper EI, Angell CA. Versatile organic iodide melts and glasses with high mole fractions of LiI: glass transition temperatures and electrical conductivities. Solid State Ionics. 1983;9:617–22.10.1016/0167-2738(83)90304-1Search in Google Scholar
[134] Cooper EI, Angell CA. Ambient temperature plastic crystal fast ion conductors (PLICFICS). Solid State Ionics. 1986;18:570–6.10.1016/0167-2738(86)90180-3Search in Google Scholar
[135] Liu C, Angell CA. Phase equilibria, high conductivity ambient temperature liquids, and glasses in the pseudo-halide systems A1C13-MSCN (M = Li, Na, K). Solid State Ionics. 1996;86:467–73.10.1016/0167-2738(96)00334-7Search in Google Scholar
[136] Xu W, Wang LM, Nieman RA, Angell CA. Ionic liquids of chelated orthoborates as model ionic glassformers. J Phys Chem B. 2003;107:11749–56.10.1021/jp034548eSearch in Google Scholar
[137] Nicotera I, Oliviero C, Henderson WA, Appetecchi GB, Passerini S. NMR investigation of ionic liquid-LiX mixtures; Pyrrolidinium cations and TFSI anions. J Phys Chem B. 2005;109:22814–9.10.1021/jp053799fSearch in Google Scholar PubMed
[138] Borodin O, Smith GD. Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid from molecular dynamics simulations. J Phys Chem B. 2006;110:11481–90.10.1021/jp061593oSearch in Google Scholar PubMed
[139] Borodin O, Smith GD, Henderson WA. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids. J Phys Chem B. 2006;110:16879–86.10.1021/jp061930tSearch in Google Scholar PubMed
[140] Kunze M, Paillard E, Jeong SS, Appetecchi GB, Schonhoff M, Winter M, et al. Inhibition of self-aggregation in ionic liquid electrolytes for high-energy electrochemical devices. J Phys Chem C. 2011;115:19431–6.10.1021/jp2055969Search in Google Scholar
[141] Castiglione F, Ragg E, Mele A, Appetecchi GB, Montanino M, Passerini S. Molecular environment and enhanced diffusivity of Li+ n lithium-salt-doped ionic liquid electrolytes. J Phys Chem Lett. 2011;2:153–7.10.1021/jz101516cSearch in Google Scholar
[142] Montanino M, Carewska M, Alessandrini F, Passerini S, Appetecchi GB. The role of the aliphatic side chain on N-alkyl-N-alkylpiperidinium bis(trifluoromethansulfonyl)imide ionic liquids. Electrochim Acta. 2011;57:153–9.10.1016/j.electacta.2011.03.089Search in Google Scholar
[143] Appetecchi GB, Montanino M, Carewska M, Alessandrini F, Passerini S. Ionic liquid binary mixtures for low temperature applications. Adv Sci Techol. 2010;72:315–9.10.4028/www.scientific.net/AST.72.315Search in Google Scholar
[144] Castiglione F, Raos G, Appetecchi GB, Montanino M, Passerini S, Moreno M, et al. Blending ionic liquids: how physico-chemical properties changes. J Phys Chem Chem Phys. 2010;12:1784–92.10.1039/b921816eSearch in Google Scholar PubMed
[145] Montanino M, Moreno M, Alessandrini F, Appetecchi GB, Passerini S, Zhou Q, et al. Physical and electrochemical properties of binary ionic liquid mixtures: (1-x)PYR14TFSI-(x)PYR14IM14. Electrochim Acta. 2012;60:163–9.10.1016/j.electacta.2011.11.030Search in Google Scholar
[146] Kunze M, Jeong SS, Appetecchi GB, Schonhoff M, Winter M, Passerini S. Mixtures of ionic liquids for low temperature electrolytes. Electrochim Acta. 2012;82:69–74.10.1016/j.electacta.2012.02.035Search in Google Scholar
[147] Appetecchi GB, Montanino M, Balducci A, Lux SF, Winter M, Passerini S. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. electrochemical characterization of the electrolytes. J Power Sources. 2009;192:599–605.10.1016/j.jpowsour.2008.12.095Search in Google Scholar
[148] Lux SF, Schmuck M, Appetecchi GB, Passerini S, Winter M, Balducci A. Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolyte. II. evaluation of specific capacity and cycling efficiency and stability at room temperature. J Power Sources. 2009;192:606–11.10.1016/j.jpowsour.2009.02.066Search in Google Scholar
[149] Lux S, Schumuck M, Rupp B, Kern W, Appetecchi GB, Passerini S, et al. Mixtures of ionic liquid in combination with graphite electrodes: the role of electrolyte additive and Li-salt. ECS Trans. 2009;16:45–9.10.1149/1.3123126Search in Google Scholar
[150] Moreno M, Simonetti E, Appetecchi GB, Carewska M, Montanino M, Kim G-T, et al. Ionic liquid electrolytes for safer lithium batteries: I. Investigation around optimal formulation. J Electrochem Soc. 2017;164:A6026–31.10.1149/2.0051701jesSearch in Google Scholar
[151] Serra Moreno J, Jeremias S, Moretti A, Panero S, Passerini S, Scrosati B, et al. Ionic liquids mixture with tunable physicochemical properties. Electrochim Acta. 2015;151:599–608.10.1016/j.electacta.2014.11.056Search in Google Scholar
[152] Montanino M, Moreno M, Carewska M, Maresca G, Simonetti E, Lo Presti R, et al. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. J Power Sources. 2014;269:608–15.10.1016/j.jpowsour.2014.07.027Search in Google Scholar
[153] Guerfi A, Dontigny M, Kobayashi Y, Vijh A, Zaghib K. Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems. J Solid State Electrochem. 2009;13:1003–14.10.1007/s10008-008-0697-xSearch in Google Scholar
[154] Kuhnel RS, Bockenfeld N, Passerini S, Winter M, Balducci A. Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochim Acta. 2011;56:4092–9.10.1016/j.electacta.2011.01.116Search in Google Scholar
[155] Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymers (Basel). 1973;14:589.10.1016/0032-3861(73)90146-8Search in Google Scholar
[156] Wright PV. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym. 1975;7:319–27.10.1002/pi.4980070505Search in Google Scholar
[157] Armand M, Chabagno JM, Duclot M. Second international meeting on solid electrolytes. Scotland: St Andrews, Sept 1978: 20–2Search in Google Scholar
[158] Armand M, Chabagno M, Duclot M. Polyethers as solid electrolytes. In: Vashitshta P, Mundy JN, Shenoy GK, editors, Fast ion transport in solids. Electrodes and electrolytes. Amsterdam: North Holland Publishers, 1979.Search in Google Scholar
[159] Gray FM. Polymer electrolytes. Cambridge: Royal Society of Chemistry Monographs, 1997.Search in Google Scholar
[160] Wright PV. Developments in polymer electrolytes for lithium batteries. MRS Bullettin. 2002;597–602.10.1557/mrs2002.194Search in Google Scholar
[161] Borghini MC, Mastragostino M, Passerini S, Scrosati B. Electrochemical properties of poly(ethylene oxide)-Li[(CF3SO3)N]-gamma-LiAlO2 composite polymer electrolytes. J Electrochem Soc. 1995;142:2118–21.10.1149/1.2044260Search in Google Scholar
[162] Appetecchi GB, Henderson WA, Villano P, Berrettoni M, Passerini S. PEO-LiN(SO2CF2CF3)2 polymer electrolytes. I. XRD, DSC and ionic conductivity characterization. J Electrochem Soc. 2001;148:1171–8.10.1149/1.1403728Search in Google Scholar
[163] Lightfoot P, Metha MA, Bruce PG. Crystal structure of the polymer electrolyte poly(ethylene oxide)3:liCF3SO3. Science. 1993;262:883–5.10.1126/science.262.5135.883Search in Google Scholar PubMed
[164] Vincent CA, Scrosati B. Modern batteries. An introduction to electrochemical power sources. 2nd ed. London: Arnold, 1993.Search in Google Scholar
[165] Gray FM, Armand M. Energy storage system for electronics. Osaka T, Datta M, editors. Amsterdam: Gordon and Breach Science Publications, 2000.Search in Google Scholar
[166] Berthier C, Gorecki W, Minier M, Armand M, Chabagno JM, Rigaud P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics. 1983;11:91–5.10.1016/0167-2738(83)90068-1Search in Google Scholar
[167] Minier M, Berthier C, Gorecki W. Thermal analysis and NMR study of a poly(ethylene oxide) complex electrolyte: PEO(LiCF3SO3)x. J Physique. 1984;45:739–44.10.1051/jphys:01984004504073900Search in Google Scholar
[168] Marzantowicz M, Dygas JR, Krok F, Tomaszewska A, Florjanczyk Z, Zygadlo-Monikowska E, et al. Star-branched poly(ethylene oxide) LiN(CF3SO2)2: A promising polymer electrolyte. J Power Sources. 2009;194:51–7.10.1016/j.jpowsour.2009.01.011Search in Google Scholar
[169] Wieczorek W. Composite polyether-based electrolytes. Warsaw: Ofycina Wydawnicza Politechniki Warszawskeiej, 1995.10.1016/0013-4686(95)00172-BSearch in Google Scholar
[170] Aihara Y, Arai S, Hayamizu K. Ionic conductivity, DSC and self-diffusion coefficients of lithium, anion, polymer, and solvent of polymer gel electrolytes: the structure of the gels and the diffusion mechanism of the ions. Electrochim Acta. 2000;45:1321–6.10.1016/S0013-4686(99)00339-4Search in Google Scholar
[171] Chakrabarti A, Juilfs A, Filler R, Mandal BK. Novel PEO-based dendronized polymers for lithium-ion batteries. Solid State Ionics. 2010;181:982–6.10.1016/j.ssi.2010.05.016Search in Google Scholar
[172] Rocco AM, Carias AD, Pereira RP. Polymer electrolytes based on a ternary miscible blend of poly(ethylene oxide), poly(bisphenol A-co-epichlorohydrin) and poly(vinyl ethyl ether). Polymer (Guildf). 2010;51:5151–64.10.1016/j.polymer.2010.08.050Search in Google Scholar
[173] Appetecchi GB, Zane D, Scrosati B. PEO-based electrolyte membranes based on LiBC4O8 salt. J Electrochem Soc. 2004;151:A1369–74.10.1149/1.1774488Search in Google Scholar
[174] Kurian M, Galvin ME, Trapa PE, Sadoway DR, Mayes AM. Single-ion conducting polymer–silicate nanocomposite electrolytes for lithium battery applications. Electrochim Acta. 2005;50:2125–34.10.1016/j.electacta.2004.09.020Search in Google Scholar
[175] Appetecchi GB, Dautzenberg G, Scrosati B. A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries. J Electrochem Soc. 1996;143:6–12.10.1149/1.1836379Search in Google Scholar
[176] Appetecchi GB, Dautzenberg G, Scrosati B Highly conductive gel electrolyte membranes. Proceedings of International Workshop on Advanced Batteries. 1995: 72–81.Search in Google Scholar
[177] Snyder JF, Carter RH, Wetzel ED. Electrochemical and mechanical behavior in mechanically robust solid polymer electrolytes for use in multifunctional structural batteries. Chem Mater. 2007;19:3793–801.10.1021/cm070213oSearch in Google Scholar
[178] Capuano F, Croce F, Scrosati B. Composite polymer electrolytes. J Electrochem Soc. 1991;52:1918–22.10.1149/1.2085900Search in Google Scholar
[179] Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998;394:456–8.10.1038/28818Search in Google Scholar
[180] Lin CW, Hung CL, Venkateswarlu M, Hwang BJ. Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. J Power Sources. 2005;146:397–401.10.1016/j.jpowsour.2005.03.028Search in Google Scholar
[181] Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, et al. Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–li(CF3SO2)2N/Li. J Power Sources. 2010;195:6847–53.10.1016/j.jpowsour.2010.04.027Search in Google Scholar
[182] Shen C, Wang JM, Tang Z, Wang HJ, Lian HQ, Zhang JQ, et al. Physicochemical properties of poly(ethylene oxide)-based composite polymer electrolytes with a silane-modified mesoporous silica SBA-15. Electrochim Acta. 2009;54:3490–4.10.1016/j.electacta.2009.01.014Search in Google Scholar
[183] Chen-Yang YW, Wang YL, Chen YT, Li YK, Chen HC, Chiu HY. Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery. J Power Sources. 2008;182:340–8.10.1016/j.jpowsour.2008.04.001Search in Google Scholar
[184] Capiglia C, Mustarelli P, Quartarone E, Tomasi C. Magistris. Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes. Solid State Ionics. 1999;118:73–9.10.1016/S0167-2738(98)00457-3Search in Google Scholar
[185] Walls HJ, Zhou J, Yerian JA, Fedkiw PS, Khan SS, Stowe MK, et al. Fumed silica-based composite polymer electrolytes: synthesis, rheology, and electrochemistry. J Power Sources. 2000;89:156–62.10.1016/S0378-7753(00)00424-9Search in Google Scholar
[186] Liu Y, Lee JY, Hong L. Functionalized SiO2 in poly(ethylene oxide)-based polymer electrolytes. J Power Sources. 2002;109:507–14.10.1016/S0378-7753(02)00167-2Search in Google Scholar
[187] Koster TKJ, Van Wullen L. Cation–anion coordination, ion mobility and the effect of Al2O3 addition in PEO based polymer electrolytes. Solid State Ionics. 2010;181:489–95.10.1016/j.ssi.2010.02.005Search in Google Scholar
[188] Pitawala HMJC, Dissanayake MAKL, Seneviratne VA, Mellander BE, Albinson I. Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf: al2O3 nanocomposite polymer electrolyte system. J Solid State Electrochem. 2008;12:783–9.10.1007/s10008-008-0505-7Search in Google Scholar
[189] Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander B-E. Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system. Electrochim Acta. 2002;47:3257–68.10.1016/S0013-4686(02)00243-8Search in Google Scholar
[190] Croce F, Sacchetti S, Scrosati B. Advanced, high-performance composite polymer electrolytes for lithium batteries. J Power Sources. 2006;161:560–4.10.1016/j.jpowsour.2006.03.069Search in Google Scholar
[191] Croce F, Sacchetti S, Scrosati B. Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources. 2006;162:685–9.10.1016/j.jpowsour.2006.07.038Search in Google Scholar
[192] Derrien G, Hassoun J, Sacchetti S, Panero S. Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler. Solid State Ionics. 2009;180:1267–71.10.1016/j.ssi.2009.07.006Search in Google Scholar
[193] Johan MR, Fen LB. Combined effect of CuO nanofillers and DBP plasticizer on ionic conductivity enhancement in the solid polymer electrolyte PEO–liCF3SO3. Ionics (Kiel). 2010;16:335–8.10.1007/s11581-009-0406-5Search in Google Scholar
[194] Wang LS, Yang WS, Wang J, Evans DG. New nanocomposite polymer electrolyte comprising nanosized ZnAl2O4 with a mesopore network and PEO-LiClO4. Solid State Ionics. 2009;180:392–7.10.1016/j.ssi.2009.02.015Search in Google Scholar
[195] Appetecchi GB, Croce F, Hassoun J, Scrosati B, Salomon M, Cassel F. Hot-pressed, dry, composite, PEO-based electrolyte membranes. I. Ionic conductivity characterization. J Power Sources. 2003;114:105–12.10.1016/S0378-7753(02)00543-8Search in Google Scholar
[196] Appetecchi GB, Alessandrini F, Carewska M, Caruso T, Prosini PP, Scaccia S, et al. Investigation on the lithium polymer electrolyte batteries. J Power Sources. 2001;97:790–4.10.1016/S0378-7753(01)00609-7Search in Google Scholar
[197] Appetecchi GB, Scaccia S, Passerini S. Investigation on the stability of the lithium-polymer electrolyte interface J. Electrochem Soc. 2000;147:4448–52.10.1149/1.1394084Search in Google Scholar
[198] Shin JH. Passerini S. PEO-LiN (SO2CF2CF3)2 polymer electrolytes. V. effect of fillers on ionic transport properties. J Electrochem Soc. 2004;151:A238–45.10.1149/1.1636737Search in Google Scholar
[199] Shin JH, Henderson WA, Appetecchi GB, Alessandrini F, Passerini S. Recent developments in the ENEA lithium metal battery project. Electrochim Acta. 2005;50:3859–65.10.1016/j.electacta.2005.02.049Search in Google Scholar
[200] Shin JH, Henderson WA, Scaccia S, Prosini PP, Passerini S. Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40 °C. J Power Sources. 2006;156:560–6.10.1016/j.jpowsour.2005.06.026Search in Google Scholar
[201] Shin JH, Henderson WA, Tizzani C, Passerini S, Jeong SS, Kim KW. Characterization of solvent-free polymer electrolytes consisting of ternary PEO – liTFSI – PYR14 TFSI. J Electrochem Soc. 2006;153:A1649–54.10.1149/1.2211928Search in Google Scholar
[202] Kim GT, Appetecchi GB, Alessandrini F, Passerini S. Solvent-free, PYR1ATFSI ionic liquids-based ternary polymer electrolyte systems. I. Electrochemical characterization. J Power Sources. 2007;171:861–9.10.1016/j.jpowsour.2007.07.020Search in Google Scholar
[203] Kim GT, Appetecchi GB, Carewska M, Joost M, Balducci A, Winter M, et al. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic-liquids. J Power Sources. 2010;195:6130–7.10.1016/j.jpowsour.2009.10.079Search in Google Scholar
[204] Wang YP, Gao XH, Chen JC, Li ZW, Li CL, Zhang SC. Imidazolium-organic solvent–alkali metal salt mixtures as nonflammable electrolytes incorporated into PVDF–PEG polymer electrolyte. J Appl Polym Sci. 2009;113:2492–8.10.1002/app.30226Search in Google Scholar
[205] Sirisopanaporn C, Fernicola A, Scrosati B. New, ionic liquid-based membranes for lithium battery application. J Power Sources. 2009;186:490–5.10.1016/j.jpowsour.2008.10.036Search in Google Scholar
[206] Lewandowski A, Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ion batteries - An overview of electrochemical studies. J Power Sources. 2009;194:601–9.10.1016/j.jpowsour.2009.06.089Search in Google Scholar
[207] Kim S, Park SJ. Preparation and electrochemical properties of composite polymer electrolytes containing 1-ethyl-3-methylimidazolium tetrafluoroborate salts. Electrochim Acta. 2009;54:3775–80.10.1016/j.electacta.2009.01.070Search in Google Scholar
[208] Shin JH, Cairns EJ. N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI–poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte. J Power Sources. 2008;177:537–45.10.1016/j.jpowsour.2007.11.043Search in Google Scholar
[209] Tigelaar DM, Meador MAB, Bennett WR. Composite electrolytes for lithium batteries: ionic liquids in APTES cross-linked polymers. Macromol. 2007;40:4159–64.10.1021/ma062804qSearch in Google Scholar
[210] Sutto TE. Hydrophobic and hydrophilic interactions of ionic liquids and polymers in solid polymer gel electrolytes. J Electrochem Soc. 2007;154:P101–7.10.1149/1.2767414Search in Google Scholar
[211] Cheng H, Zhu CB, Huang B, Lu M, Yang Y. Synthesis and electrochemical characterization of PEO-based polymer electrolytes with room temperature ionic liquids. Electrochim Acta. 2007;52:5789–94.10.1016/j.electacta.2007.02.062Search in Google Scholar
[212] Zhao Y, Tao RY, Fujinami T. Enhancement of ionic conductivity of PEO-LiTFSI electrolyte upon incorporation of plasticizing lithium borate. Electrochim Acta. 2006;51:6451–5.10.1016/j.electacta.2006.04.030Search in Google Scholar
[213] Kawano R, Tokuda H, Katakabe T, Nakamoto H, Kokubo H, Imabayashi S, et al. Specific charge transport in ionic liquids and ion gels and the importance in material science. Kobunshi Ronbunshu. 2006;63:31–40.10.1295/koron.63.31Search in Google Scholar
[214] Borodin O, Smith GD, Geiculescu O, Creager SE, Hallac B, DesMarteau D. Li+ transport in lithium sulfonylimide−oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. J Phys Chem B. 2006;110:24266–74.10.1021/jp0653104Search in Google Scholar PubMed
[215] Seki S, Susan ABH, Kaneko T, Tokuda H, Noda A, Watanabe M. Distinct difference in ionic transport behavior in polymer electrolytes depending on the matrix polymers and incorporated salts. J Phys Chem B. 2005;109:3886–92.10.1021/jp045328jSearch in Google Scholar PubMed
[216] Gerbaldi C, Nair JR, Ahmad S, Meligrana G, Bongiovanni R, Bodoardo S, et al. UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. J Power Sources. 2010;195:1706–13.10.1016/j.jpowsour.2009.09.047Search in Google Scholar
[217] Gayet F, Viau L, Leroux F, Monge S, Robin JJ, Vioux A. Polymer nanocomposite ionogels, high-performance electrolyte membranes. J Mater Chem. 2010;20:9456–62.10.1039/c000033gSearch in Google Scholar
[218] Abitelli E, Ferrari S, Quartarone E, Mustarelli P, Magistris A, Fagnoni M, et al. Polyethylene oxide electrolyte membranes with pyrrolidinium-based ionic liquids. Electrochim Acta. 2010;55:5478–84.10.1016/j.electacta.2010.04.099Search in Google Scholar
[219] Castriota M, Caruso T, Agostino RG, Cazzanelli E, Henderson WA, Passerini S. Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide and its Mixture with LiN(SO2CF3)2. J Phys Chem. 2005;109:92–6.10.1021/jp046030wSearch in Google Scholar
[220] Passerini S, Montanino M, Appetecchi GB. Lithium polymer batteries based on ionic liquids. In: Mittal V, editor, Polymers for energy storage and conversion. USA: John Wiley and Scriverner Publishing, 2013: 53–101.10.1002/9781118734162.ch3Search in Google Scholar
[221] Simonetti E, Carewska M, Maresca G, De Francesco M, Appetecchi GB. Highly conductive, ionic liquid-based polymer electrolytes. J Electroch Soc. 2017;164:A6213–9.10.1149/2.0331701jesSearch in Google Scholar
[222] Simonetti E, Carewska M, Di Carli M, Moreno M, De Francesco M, Appetecchi GB. Towards improvement of the electrochemical properties of ionic liquid-containing polymer electrolytes. Electrochim Acta. 2017;235:323–31.10.1016/j.electacta.2017.03.080Search in Google Scholar
[223] Prosini PP, Passerini S, Vellone R, Smyrl WH. V2O5 xerogel lithium-polymer electrolyte batteries. J Power Sources. 1998;75:73–83.10.1016/S0378-7753(98)00094-9Search in Google Scholar
[224] Rymarczyk J, Carewska M, Appetecchi GB, Zane D, Alessandrini F, Passerini S. A novel ternary polymer electrolyte for LMP based on cross-linked poly(urethaneacrylate) in presence of a lithium salt and an ionic liquid. Eur Polym J. 2008;44:2153–61.10.1016/j.eurpolymj.2008.04.026Search in Google Scholar
[225] Tizzani C, Appetecchi GB, Carewska M, Kim G-T, Passerini S. Investigation of the electrochemical properties of polymer-LiX-ionic liquid ternary systems. Austr J Chem. 2007;60:47–50.10.1071/CH06293Search in Google Scholar
[226] Sirisopanaporn C, Fernicola A, Scrosati B. New, ionic liquid-based membranes for lithium battery application. J Power Sources. 2009;186:490–5.10.1016/j.jpowsour.2008.10.036Search in Google Scholar
[227] Ferrari S, Quartarone E, Mustarelli P, Magistris A, Fagnoni M, Protti S, Gerbaldi C, Spinella A. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-Nmethylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J Power Sources. 2010;195:559–66.10.1016/j.jpowsour.2009.08.015Search in Google Scholar
[228] Navarra MA, Manzi J, Lombardo L, Panero S, Scrosati B, Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries. Chem Sus Chem. 2011;4:125–30.10.1002/cssc.201000254Search in Google Scholar PubMed
[229] Bansal D, Cassel F, Croce F, Hendrickson M, Plichta E, Salomon M. Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. J Phys Chem B. 2005;109:4492–6.10.1021/jp0443963Search in Google Scholar PubMed
[230] Hutto TE. Hydrophobic and hydrophilic interactions of ionic liquids and polymers in solid polymer gel electrolytes. J Electrochem Soc. 2007;154:101–7.10.1149/1.2767414Search in Google Scholar
[231] Li ZH, Xia QL, Liu LL, Lei GT, Xiao QZ, Gao DS, Zhou XD. Effect of zwitterionic salt on the electrochemical properties of a solid polymer electrolyte with high temperature stability for lithium ion batteries. Electrochim Acta. 2010;56:804–9.10.1016/j.electacta.2010.09.068Search in Google Scholar
[232] Liu LL, Li ZH, Xia QL, Xiao QZ, Lei GT, Zhou XD. Electrochemical study of P(VDF-HFP)/PMMA blended polymer electrolyte with high-temperature stability for polymer lithium secondary batteries. Ionics. 2012;18:275–81.10.1007/s11581-011-0632-5Search in Google Scholar
[233] Marcilla R, Alcaide F, Sardon H, Pomposo JA, Pozo-Gonzalo C, Mecerreyes D. Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem Commun. 2006;8:482–8.10.1016/j.elecom.2006.01.013Search in Google Scholar
[234] Matsumi N, Sugai K, Miyake M, Ohno H. Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules. 2006;39:6924–7.10.1021/ma060472jSearch in Google Scholar
[235] Ohno H. Molten salt type polymer electrolytes. Electrochim Acta. 2001;46:1407–11.10.1016/S0013-4686(00)00733-7Search in Google Scholar
[236] Yoshizawa M, Ogihara H, Ohno H. Novel polymer electrolytes prepared by copolymerization of ionic liquid monomers. Polym Adv Technol. 2002;13:589–94.10.1002/pat.261Search in Google Scholar
[237] Pont A-L, Marcilla R, de Meatza I, Grande H, Mecerreyes D. Pyrrolidinium-based polymeric ionic liquids as mechanically and electrochemically stable polymer electrolytes. J Power Sources. 2009;188:558–63.10.1016/j.jpowsour.2008.11.115Search in Google Scholar
[238] Appetecchi GB, Kim G-T, Montanino M, Carewska M, Marcilla R, Mecerreyes D, de Meatza I. Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries. J Power Sources. 2010;195:3668–75.10.1016/j.jpowsour.2009.11.146Search in Google Scholar
[239] Li Q, Chen J, Fan L, Kong X, Lu Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Envir. 2016;1,18–42.10.1016/j.gee.2016.04.006Search in Google Scholar
[240] Zhang Z, Hu L, Wu H, Weng W, Koch M, Redfern PC, Curtiss LA, Amine K. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environ Sci. 2013;6:1806–10.10.1039/c3ee24414hSearch in Google Scholar
[241] Chen Z, Ren Y, Jansen AN, Lin CK, Weng W, Amine K. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nat Commun. 2013;4:66–78.10.1038/ncomms2518Search in Google Scholar PubMed
[242] von Cresce A, Xu K, Electrolyte additive in support of 5 V Li ion chemistry. J Electrochem Soc. 2011;158:A337–42.10.1149/1.3532047Search in Google Scholar
[243] Suo L, Borodin O, Gao T, Olguin M, Ho J, Fan X, Luo C, Wang C, Xu R. Water-in-salt electrolyte enables high-voltage aqueous lithium-ion chemistries. Science. 2015;350:938–43.10.1126/science.aab1595Search in Google Scholar PubMed
[244] Kiyohara K, Sugino T, Asaka K. Electrolytes in porous electrodes: effects of the pore size and the dielectric constant of the medium. J Chem Phys. 2010;132:144705–17.10.1063/1.3376611Search in Google Scholar PubMed
[245] Awaka J, Kijima N, Hayakawa H, Akimoto J. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem. 2009;182:2046–52.10.1016/j.jssc.2009.05.020Search in Google Scholar
[246] de la Torre Gamarra C, Appetecchi GB, Ulissi U, Varzi A, Varez Alvarez A, Passerini S. NASICON-ionic liquid hybrid electrolytes: an approach for realizing solid-state sodium-ion batteries? J Power Sources. 2018;383:157–63.10.1016/j.jpowsour.2017.12.037Search in Google Scholar
[247] Keller M, Appetecchi GB, Kim G-T, Sharova V, Schneider M, Schuhmacher J, Roters A, Passerini S. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. J Power Sources. 2017;353:287–97.10.1016/j.jpowsour.2017.04.014Search in Google Scholar
[248] Ferguson G, Curtiss LA. Applications of molecular modeling to challenges in clean energy. Chapter 12, 217–233. In: ACS Symposium Series 1133 2013ISBN13: 9780841228207eISBN: 9780841228214, Publication Date (Web): June 3 2013.10.1021/bk-2013-1133.ch012Search in Google Scholar
[249] Park JW, Ueno K, Tachinawa N, Dokko K, Watanabe M. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium–sulfur batteries. J Phys Chem C. 2013;117:4431–40.10.1021/jp400153mSearch in Google Scholar
[250] Unemoto A, Ogawa H, Gambe Y, Honma I. Development of lithium-sulfur batteries using room temperature ionic liquid-based quasi solid electrolytes. Electrochim Acta 2014;125:386–94.10.1016/j.electacta.2014.01.105Search in Google Scholar
[251] Lin Z, Liang C. Lithium–sulfur batteries: from liquid to solid cells. J Mat Chem. 2015;3:936–58.10.1039/C4TA04727CSearch in Google Scholar
[252] Angulakshmi N, Stephan AM. Efficient electrolytes for lithium–sulfur batteries. Front Ener Res. 2015;3:Art. 17 p2.10.3389/fenrg.2015.00017Search in Google Scholar
[253] Wang L, Liu J, Yuan S, Wang Y, Xia Y. To mitigate self-discharge of lithium–sulfur batteries by optimizing ionic liquid electrolytes. Ener & Envir Sci. 2016;9:224–31.10.1039/C5EE02837JSearch in Google Scholar
[254] Wang L, Byon HR. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium–sulfur batteries. J Power Sources. 2013;236:207–14.10.1016/j.jpowsour.2013.02.068Search in Google Scholar
[255] Mizuno F, Nakanishi S, Shirasawa A, Takechi K, Shiga T, Nishikoori H, Iba H. Progress on nonaqueous electrolyte for Li-air batteries. Electrochemistry. 2011;79:876–81.10.5796/electrochemistry.79.876Search in Google Scholar
[256] Elia G, Hassoun J, Kwak WJ, Sun YK, Scrosati B, Mueller, Bresser D, Passerini S, Oberhumer P, Tsiouvaras N, Reiter J. An advanced lithium-air battery exploiting an ionic liquid-based electrolyte. Nano Lett. 2014;14:6572–7.10.1021/nl5031985Search in Google Scholar PubMed
[257] Hallinan DT Jr, Balsara NP. Polymer electrolytes. Annual Rev Mater Res. 2013;43:503–25.10.1146/annurev-matsci-071312-121705Search in Google Scholar
[258] Krekelberg W, Mittal J, Ganesan V, Truskett T. Phys Rev Lett. 2011;107:148304article.10.1103/PhysRevLett.107.148304Search in Google Scholar PubMed
[259] Park MJ, Choi I, Hong J, Kim O. Polymer electrolytes integrated with ionic liquids for future electrochemical devices. J Appl Polym Sci. 2013;129:2363–76.10.1002/app.39064Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Characterisation of battery materials by electron and ion microscopy techniques: a review
- Hydrogenation of nitriles and imines for hydrogen storage
- Coupling photoredox and biomimetic catalysis for the visible-light-driven oxygenation of organic compounds
- Energy transfer in liquid and solid nanoobjects: application in luminescent analysis
- An introductory course in green chemistry: Progress and lessons learned
- Molecular structure and vibrational spectra of 2-(4-bromophenyl)-3-(4-hydroxyphenyl) 1,3-thiazolidin-4-one and its selenium analogue: Insights using HF and DFT methods
- Applied battery diagnosis
- Inorganic mass spectrometry
- Safer electrolyte components for rechargeable batteries
Articles in the same Issue
- Characterisation of battery materials by electron and ion microscopy techniques: a review
- Hydrogenation of nitriles and imines for hydrogen storage
- Coupling photoredox and biomimetic catalysis for the visible-light-driven oxygenation of organic compounds
- Energy transfer in liquid and solid nanoobjects: application in luminescent analysis
- An introductory course in green chemistry: Progress and lessons learned
- Molecular structure and vibrational spectra of 2-(4-bromophenyl)-3-(4-hydroxyphenyl) 1,3-thiazolidin-4-one and its selenium analogue: Insights using HF and DFT methods
- Applied battery diagnosis
- Inorganic mass spectrometry
- Safer electrolyte components for rechargeable batteries