Startseite N-aminophthalimide as a novel UV-stabilizer to promote physico-mechanical properties of high-density polyethylene (HDPE)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

N-aminophthalimide as a novel UV-stabilizer to promote physico-mechanical properties of high-density polyethylene (HDPE)

  • Ahmed Abd Allah Haroun , Hamed A. Derbala , Ghada Bassioni , Ute Resch-Genger , Emad S. Shafik und Ayman M. A. Hassan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study aimed to evaluate the efficacy of N-aminophthalimide (NAP) as a novel UV-stabilizer for high-density polyethylene (HDPE) in improving its physico-mechanical properties under UV exposure. NAP was synthesized by interaction between phthalimide and hydrazine hydrate. It was incorporated into HDPE with different weight ratios (1, 1.5, 2, and 3 %), and its performance was compared with Hostavin as a traditional UV stabilizer. The HDPE composites were exposed to UV irradiation for different periods (7 and 14 days) to evaluate their photodegradation behavior. Tensile strength, elongation at break were assessed before and after UV exposure. Also, oxidation induction time (OIT), melt flow rate (MFR), Vicat softening temperature were evaluated. Hostavin incorporation reduced tensile strength from 22.36 to 20.62 MPa at higher concentrations. It has been found that 3 % Hostavin, significantly improved elongation at break, increasing from 423 % to 1,170 %, suggesting enhanced flexibility. In contrast, NAP increased tensile strength to 22.9 MPa and moderately enhanced elongation but slightly declined at 3 % due to potential over-stabilization. Under UV exposure, retained tensile strength and elongation was improved with stabilizer content, which increasing tensile strength retention. The HDPE that containing NAP showed enhanced UV resistance and superior retention of mechanical properties compared to Hostavin.


Corresponding author: Ayman M. A. Hassan, Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt, E-mail:

Acknowledgments

The authors wish to express their sincere gratitude to the Chemistry Department at Ain Shams University, and Polymers and Pigments Department at National Research Centre for their generous support and invaluable resources, which were indispensable to the completion of this study.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Stefan, D. S.; Bosomoiu, M.; Teodorescu, G. The Behavior of Polymeric Pipes in Drinking Water Distribution System–Comparison with Other Pipe Materials. Polymers 2023, 15 (19), 3872. https://doi.org/10.3390/polym15193872.Suche in Google Scholar PubMed PubMed Central

2. Shafik, E. S.; Tawfic, M. L.; Younan, A. F. Mechanical, Morphological, Flamability and Thermal Properties of Artificial Wood Plastic. Pigm. Resin Technol. 2021, 50 (3), 204–211. https://doi.org/10.1108/PRT-06-2020-0054.Suche in Google Scholar

3. Shafik, E. S.; Lotfy, V. F.; Basta, A. H. Upcycling Polyethylene Terephthalate Wastes for Enhancing the Performance of Polyester from Rice Straw Polyol in HDPE-Composites. Sci. Rep. 2023, 13 (1), 13923. https://doi.org/10.1038/s41598-023-40031-w.Suche in Google Scholar PubMed PubMed Central

4. Lotfy, V. F.; Basta, A. H.; Shafik, E. S. Synergic Effect of Cellulose-And Carbon-Based Nanostructure Derived from Agricultural Biowaste on the Performance of Polyester–HDPE Nanocomposite. Appl. Nanosci. 2023, 13 (9), 6503–6518. https://doi.org/10.1007/s13204-023-02924-0.Suche in Google Scholar

5. Gierulski, M. P.; Tomlinson, R.; Troughton, M. Electrofusion Welding and Reinforced Thermoplastic Pipes–A Review. J. Reinf. Plast. Compos. 2022, 41 (3–4), 147–163. https://doi.org/10.1177/07316844211051207.Suche in Google Scholar

6. Tawfic, M. L.; Morsi, M. S.; Shafik, E. S. Natural Abundant Prodegradant for Oxo-Degradation of Polymers. J. Polym. Res. 2022, 29 (2), 60. https://doi.org/10.1007/s10965-022-02907-9.Suche in Google Scholar

7. Sangamesha, M.; Ranganatha, V. L.; Rashmi, V.; Ramu, R.; Mallikarjunaswamy, C. Synthesis and Characterization of 4-Hydroxy Benzophenone (Ph2CO)/Polyvinyl Alcohol (PVA) Composites for Ultraviolet (UV)-Shielding Applications. Mater. Today: Proc. 2022, 62, 5250–5257. https://doi.org/10.1016/j.matpr.2022.03.217.Suche in Google Scholar

8. Zhai, Z.; Feng, L.; Li, G.; Liu, Z.; Chang, X. The Anti-ultraviolet Light (UV) Aging Property of Aluminium Particles/epoxy Composite. Prog. Org. Coat. 2016, 101, 305–308. https://doi.org/10.1016/j.porgcoat.2016.09.006.Suche in Google Scholar

9. Zhang, X.; Cai, Y.; Teng, X.; Nan, B.; Xu, S. Application of Polybenzimidazole as a Panchromatic Ultraviolet Absorber in Poly (Vinyl Chloride) Film. Constr. Build. Mater. 2019, 194, 171–178. https://doi.org/10.1016/j.conbuildmat.2018.10.152.Suche in Google Scholar

10. Li, C.; Ma, W.; Ren, X. Synthesis and Application of Benzotriazole UV Absorbers to Improve the UV Resistance of Polyester Fabrics. Fibers Polym. 2019, 20, 2289–2296. https://doi.org/10.1007/s12221-019-8722-5.Suche in Google Scholar

11. Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Zaborski, M. New Organic-Inorganic Hybrids as Multifunctional Additives to Improve Ethylene-Norbornene (EN) Composite Stability. Polym. Degrad. Stab. 2019, 160, 110–119. https://doi.org/10.1016/j.polymdegradstab.2018.12.012.Suche in Google Scholar

12. Nguyen, K. Q.; Cousin, P.; Mohamed, K.; Robert, M.; El-Safty, A.; Benmokrane, B. Effects of Ultraviolet Radiation on Recycled and Virgin HDPE Corrugated Pipes Used in Road Drainage Systems. J. Polym. Environ. 2022, 30 (8), 3391–3408. https://doi.org/10.21203/rs.3.rs-978155/v1.Suche in Google Scholar

13. Viljoen, D.; Labuschagné, J.; Kuehnert, I. The Weathering Resistance of Quaternary High‐density Polyethylene (HDPE) Composites: Effects of Weld Lines, Formulation and Degradation on Tensile Properties. J. Polym. Sci. 2023, 61 (16), 1912–1929. https://doi.org/10.1002/pol.20230109.Suche in Google Scholar

14. Yang, B.; Yang, Y.; Huo, Z.; Yu, Y. Advances in Research on Aging Properties of Polyvinyl Chloride and Polyvinylidene Fluoride Membranes. Constr. Build. Mater. 2023, 367, 130292. https://doi.org/10.1016/j.conbuildmat.2023.130292.Suche in Google Scholar

15. Chen, S.; Xiang, B.; Zou, X.; Zhou, Y. Synthesis and Exploration of Triazine Ultraviolet Absorbers with Surface Enrichment Property. Tetrahedron 2017, 73 (31), 4566–4572. https://doi.org/10.1016/j.tet.2017.06.018.Suche in Google Scholar

16. Xu, S.; Cao, D.; Chen, M. Synthesis and Characterization of a Bisbenzotriazole Derivative and its Application in PVC as an Ultraviolet Absorber. J. Vinyl Addit. Technol. 2007, 13 (4), 195–200. https://doi.org/10.1002/vnl.20134.Suche in Google Scholar

17. Huang, Z.; Ding, A.; Guo, H.; Lu, G.; Huang, X. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging. Sci. Rep. 2016, 6 (1), 25508. https://doi.org/10.1038/srep25508.Suche in Google Scholar PubMed PubMed Central

18. Rowe, R. K.; Ewais, A. Ageing of Exposed Geomembranes at Locations with Different Climatological Conditions. Can. Geotech. J. 2015, 52 (3), 326–343. https://doi.org/10.1139/cgj-2014-0131.Suche in Google Scholar

19. Ewais, A.; Rowe, R. K.; Rimal, S.; Sangam, H. P. 17-year Elevated Temperature Study of HDPE Geomembrane Longevity in Air, Water and Leachate. Geosynth. Int. 2018, 25 (5), 525–544. https://doi.org/10.1680/jgein.18.00016.Suche in Google Scholar

20. Nguyen, V. D.; Hao, J.; Wang, W. Ultraviolet Weathering Performance of High-Density Polyethylene/wood-Flour Composites with a Basalt-Fiber-Included Shell. Polymers 2018, 10 (8), 831. https://doi.org/10.3390/polym10080831.Suche in Google Scholar PubMed PubMed Central

21. Grigoriadou, I.; Paraskevopoulos, K.; Karavasili, M.; Karagiannis, G.; Vasileiou, A.; Bikiaris, D. HDPE/Cu-nanofiber Nanocomposites with Enhanced Mechanical and UV Stability Properties. Composites, Part B 2013, 55, 407–420. https://doi.org/10.1016/j.compositesb.2013.07.002.Suche in Google Scholar

22. Grigoriadou, I.; Paraskevopoulos, K.; Chrissafis, K.; Pavlidou, E.; Stamkopoulos, T.-G.; Bikiaris, D. Effect of Different Nanoparticles on HDPE UV Stability. Polym. Degrad. Stabil. 2011, 96 (1), 151–163. https://doi.org/10.1016%2Fj.polymdegradstab.2010.10.001.10.1016/j.polymdegradstab.2010.10.001Suche in Google Scholar

23. Yang, X.; Li, N.; Li, Y.; Pang, S. Insensitive High-Energy Density Materials Based on Azazole-Rich Rings: 1, 2, 4-triazole N-Oxide Derivatives Containing Isomerized Nitro and Amino Groups. Int. J. Mol. Sci. 2023, 24 (4), 3918. https://doi.org/10.3390/ijms24043918.Suche in Google Scholar PubMed PubMed Central

24. Singh, S.; Mandal, M. K.; Masih, A.; Saha, A.; Ghosh, S. K.; Bhat, H. R.; Singh, U. P. 1, 3, 5‐Triazine: A Versatile Pharmacophore with Diverse Biological Activities. Archiv der Pharmazie 2021, 354 (6), 2000363. https://doi.org/10.1002/ardp.202000363.Suche in Google Scholar PubMed

25. Gao, H.; Zhang, Q.; Jean’ne, M. S. Fused Heterocycle-Based Energetic Materials (2012–2019). J. Mater. Chem. A 2020, 8 (8), 4193–4216. https://doi.org/10.1039/C9TA12704F.Suche in Google Scholar

26. Bian, C.; Lei, Q.; Zhang, J.; Guo, X.; Ma, Z.; Yang, H.; Li, H.; Xiao, Z. Insight into the Thermostability and Low Sensitivity of Energetic Salts Based on Planar Fused-Triazole Cation. Polyhedron 2021, 201, 115158. https://doi.org/10.1016/j.poly.2021.115158.Suche in Google Scholar

27. Li, X.; Sun, Q.; Lin, Q.; Lu, M. [NN= NN]-linked Fused Triazoles with π-π Stacking and Hydrogen Bonds: Towards Thermally Stable, Insensitive, and Highly Energetic Materials. Chem. Eng. J. 2021, 406, 126817. https://doi.org/10.1016/j.cej.2020.126817.Suche in Google Scholar

28. Yin, P.; He, C.; Jean’ne, M. S. Fused Heterocycle-Based Energetic Salts: Alliance of Pyrazole and 1, 2, 3-triazole. J. Mater. Chem. A 2016, 4 (4), 1514–1519. https://doi.org/10.1039/C5TA09999D.Suche in Google Scholar

29. Algohary, A. M.; Hassan, A.; Alzahrani, A. Y.; Rizk, S. A. Microwave‐ultrasonic Assisted Synthesis, and Characterization of Novel 3′‐(amino, Hydrazino and Hydrazide)‐6′‐bromo‐spiro (Isobenzofuran‐1, 2′‐quinazoline)‐3, 4′‐dione Derivatives as Antimicrobial Agents. J. Heterocycl. Chem. 2023, 60 (6), 1014–1026. https://doi.org/10.1002/jhet.4647.Suche in Google Scholar

30. Shafik, E.; Ismael, A.; Hassan, A. M. A.; Derbala, H.; Elziaty, A.; Elsayed, G. Synthesis and Evaluation of N-Heterocyclic Compound as Antioxidant and its Influence on Physico-Mechanical and Electrical Properties of Acrylonitrile-Butadiene Rubber. KGK 2020, 73 (9), 32–38.Suche in Google Scholar

31. Khalil, M. S.; Ismail, M. F.; Kamal, M.; Hosni, E. M.; Elsayed, G. A.; Hassan, A. M. A. Synthesis and Insecticidal Assessment of Nitrogenous Heterocycles Derived from 2-pyridone Derivative against Culex pipiens L. Larvae. J. Mol. Struct. 2025, 1322, 140405. https://doi.org/10.1016/j.molstruc.2024.140405.Suche in Google Scholar

32. Hassan, A. M. A.; Abubshait, S. A.; Abdel‐Haleem, D. R.; El‐Naggar, A. M.; Hassaballah, A. I. Eco‐sustainable Synthesis and Potential Efficiency of Some Novel N‐containing Heterocyclic Derivatives as Insecticidal and Photosensitizing Agents against Musca domestica L. Chem. Biodiversity 2024, e202401650; https://doi.org/10.1002/cbdv.202401650.Suche in Google Scholar PubMed

33. Fhid, O.; Doma, A.; Zeglam, T. H.; Baki, J.; Zitouni, M.; Sdera, W. Synthesis, Characterization and Antimicrobial Activity of Some New Phthalimide Derivatives. Pharma Chem. 2015, 7 (11), 240–242.Suche in Google Scholar

34. Abdelaal, M. M.; Mohamed, S.; Barakat, Y.; Derbala, H. A.; Hassan, H. H.; Al Zoubi, W. N-Aminophthalimide as a Synthon for Heterocyclic Schiff Bases: Efficient Utilization as Corrosion Inhibitors of Mild Steel in 0.5 Mol. L-1 H2SO4 Solution. Egypt. J. Chem. 2018, 61 (3), 539–558. https://doi.org/10.21608/EJCHEM.2018.2414.1198.Suche in Google Scholar

Received: 2025-01-07
Accepted: 2025-05-07
Published Online: 2025-06-11
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2024-0262/html
Button zum nach oben scrollen