Home Preparation of chitosan/nano-copper sulfide/carrageenan bilayer film and its application in strawberry preservation
Article
Licensed
Unlicensed Requires Authentication

Preparation of chitosan/nano-copper sulfide/carrageenan bilayer film and its application in strawberry preservation

  • Yue Zeng , Zhixin Xue ORCID logo EMAIL logo , Cunzhen Geng and Cuixia Qiao
Published/Copyright: June 23, 2025
Become an author with De Gruyter Brill

Abstract

This study developed a bilayer film (CS-xCuS/CA) for food packaging, using chitosan (CS), nano-copper sulfide (CuS NP) and carrageenan (CA) through a casting method and a layer-by-layer approach. The structure of CS-xCuS/CA was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction. The mechanical properties, swelling degree, water vapor permeability, water contact angle, and optical properties of the film were evaluated. At 0 % humidity, tensile strength of the film increased with concentration of CuS NP. Conversely, at 25 % and 50 % humidity, tensile strength initially increased and then decreased with rising CuS NP concentration, a behavior attributed to hydrogen bonding. Furthermore, the incorporation of CuS NP enhanced the hydrophobicity of the film, achieving a contact angle of 118.88° at a CuS NP mass fraction of 0.75 wt%. Additionally, CuS NP significantly improved the UV resistance of the composite film. In tests for strawberry preservation, the efficacy of CS-xCuS/CA increased with the concentration of CuS NP. This film holds promise for applications in fruit packaging and food preservation industry.


Corresponding author: Zhixin Xue, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China; and Department of Traditional Chinese Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China, E-mail:

Acknowledgments

We would like to express our special gratitude to Senior Laboratory Technician Yinghua Lou from Environment and Geography Institute of Qingdao University for providing the antibacterial experimental conditions and technical support for this experiment.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflicts of interest.

  6. Research funding: This work was financially supported by Program of National Natural Science Foundation of China (52173037), and State Key Laboratory of Bio-Fibers and Eco-Textiles of Qingdao University (ZFT201810, ZKT17, TSKT202107).

  7. Data availability: The data that support the findings of this study are available on request from the corresponding author.

References

1. Venkatesan, R.; Surya, S.; Suganthi, S.; Muthuramamoorthy, M.; Pandiaraj, S.; Kim, S. C. Biodegradable Composites from Poly(butylene Adipate-Co-Terephthalate) with Carbon Nanoparticles: Preparation, Characterization and Performances. Environ. Res. 2023, 235, 116634; https://doi.org/10.1016/j.envres.2023.116634.Search in Google Scholar PubMed

2. Venkatesan, R.; Alagumalai, K.; Jebapriya, M.; Dhilipkumar, T.; Almutairi, T. M.; Kim, S. C. Enhancing PBAT Nanocomposite Films: The Impact of AgVO3 Nanorods on Mechanical, Hydrophobicity, and Antibacterial Properties. Polym. Compos. 2024, 45 (16), 15340–15355; https://doi.org/10.1002/pc.28863.Search in Google Scholar

3. Venkatesan, R.; Dhilipkumar, T.; Kiruthika, A.; Ali, N.; Kim, S. C. Green Composites for Sustainable Food Packaging: Exploring the Influence of Lignin-TiO(2) Nanoparticles on Poly(butylene Adipate-Co-Terephthalate). Int. J. Biol. Macromol. 2024, 277 (Pt 3), 134511; https://doi.org/10.1016/j.ijbiomac.2024.134511.Search in Google Scholar PubMed

4. Venkatesan, R.; Dhilipkumar, T.; Shankar, K. V.; Almutairi, T. M.; Kim, S. C. Eco-friendly Food Packaging: Gallic Acid as a Cross-Linking Agent in PBAT/cellulose Composite Films. Cellulose 2024, 31 (13), 8105–8125; https://doi.org/10.1007/s10570-024-06046-w.Search in Google Scholar

5. Venkatesan, R.; Rajeswari, N. ZnO/PBAT Nanocomposite Films: Investigation on the Mechanical and Biological Activity for Food Packaging. Polym. Adv. Technol. 2016, 28 (1), 20–27; https://doi.org/10.1002/pat.3847.Search in Google Scholar

6. Li, Y.; Wu, Y.; Zhai, H.; Qiao, C.; Zhao, G.; Xue, Z.; Xia, Y. Effect of the Pre-crosslinking of Ba2+ Ions on Wet Spinning of Agar Fibers. Int. J. Biol. Macromol. 2024, 259, 129169; https://doi.org/10.1016/j.ijbiomac.2023.129169.Search in Google Scholar PubMed

7. Sivaramakrishna, D.; Bhuvanachandra, B.; Mallakuntla, M. K.; Das, S. N.; Ramakrishna, B.; Podile, A. R. Pretreatment with KOH and KOH-Urea Enhanced Hydrolysis of α-chitin by an Endo-Chitinase from Enterobacter cloacae Subsp. Cloacae. Carbohyd. Polym. 2020, 235, 115952; https://doi.org/10.1016/j.carbpol.2020.115952.Search in Google Scholar PubMed

8. Lin, Y.; Qiao, C.; Zhao, Z.; Xia, Y.; Zhao, G.; Xue, Z. Fabrication and Characterization of Carrageenan/ZnO/Chitosan Composite Films. Langmuir 2023, 39 (22), 7930–7938; https://doi.org/10.1021/acs.langmuir.3c00791.Search in Google Scholar PubMed

9. Balasubramanian, R.; Kim, S. S.; Lee, J. Novel Synergistic Transparent K-Carrageenan/Xanthan Gum/Gellan Gum Hydrogel Film: Mechanical, Thermal and Water Barrier Properties. Int. J. Biol. Macromol. 2018, 118 (Pt A), 561–568; https://doi.org/10.1016/j.ijbiomac.2018.06.110.Search in Google Scholar PubMed

10. Wang, C.; Song, Z.; Cao, Y.; Han, L.; Yu, Q.; Han, G.; Zhu, X. Characterization of Sodium Alginate-Carrageenan Films Prepared by Adding Peanut Shell Flavonoids as an Antioxidant: Application in Chilled Pork Preservation. Int. J. Biol. Macromol. 2024, 266, 131081; https://doi.org/10.1016/j.ijbiomac.2024.131081.Search in Google Scholar PubMed

11. Xu, C.; Zhan, W.; Tang, X.; Mo, F.; Fu, L.; Lin, B. Self-healing Chitosan/vanillin Hydrogels Based on Schiff-Base Bond/hydrogen Bond Hybrid Linkages. Polym. Test. 2018, 66, 155–163; https://doi.org/10.1016/j.polymertesting.2018.01.016.Search in Google Scholar

12. Amjed, N.; Bhatti, I. A.; Simon, L.; Castel, C. D.; Zia, K. M.; Zuber, M.; Hafiz, I.; Murtaza, M. A. Preparation and Characterization of Thermoplastic Polyurethanes Blended with Chitosan and Starch Processed through Extrusion. Int. J. Biol. Macromol. 2022, 208, 37–44; https://doi.org/10.1016/j.ijbiomac.2022.03.008.Search in Google Scholar PubMed

13. Li, L.; Xu, Y.; Xu, Z.; Wu, C.; Chen, Q.; Xu, K.; Shi, Z. Synthesis, Characterization and Antifungal Properties of Dehydroabietic Acid Modified Chitosan. Int. J. Biol. Macromol. 2024, 255, 128056; https://doi.org/10.1016/j.ijbiomac.2023.128056.Search in Google Scholar PubMed

14. Govindaraj, P.; Abathodharanan, N.; Ravishankar, K.; Raghavachari, D. Facile Preparation of Biocompatible Macroporous Chitosan Hydrogel by Hydrothermal Reaction of a Mixture of Chitosan-Succinic Acid-Urea. Mater. Sci. Eng. C. Mater. Biol. Appl. 2019, 104, 109845; https://doi.org/10.1016/j.msec.2019.109845.Search in Google Scholar PubMed

15. Luo, Z.; Xue, K.; Zhang, X.; Lim, J. Y. C.; Lai, X.; Young, D. J.; Zhang, Z. X.; Wu, Y.-L.; Loh, X. J. Thermogelling Chitosan-Based Polymers for the Treatment of Oral Mucosa Ulcers. Biomater. Sci. 2020, 8 (5), 1364–1379; https://doi.org/10.1039/c9bm01754b.Search in Google Scholar PubMed

16. Zhao, J.; Wang, Y.; Li, J.; Lei, H.; Zhen, X.; Gou, D.; Liu, T. Preparation of chitosan/Enoki Mushroom Foot Polysaccharide Composite Cling Film and its Application in Blueberry Preservation. Int. J. Biol. Macromol. 2023, 246, 125567; https://doi.org/10.1016/j.ijbiomac.2023.125567.Search in Google Scholar PubMed

17. Das, D.; Dey, R.; Das, S.; Hussain, S.; Ghosh, A. K.; Pal, A. K. Nano-Ag/DLC/Cellulose Free-Standing Films towards Anti-bacterial and Bio-Compatible Futuristic Bandage Applications. J. Polym. Environ. 2020, 28 (1), 284–294; https://doi.org/10.1007/s10924-019-01606-9.Search in Google Scholar

18. Mesgari, M.; Aalami, A. H.; Sahebkar, A. Antimicrobial Activities of Chitosan/titanium Dioxide Composites as a Biological Nanolayer for Food Preservation: A Review. Int. J. Biol. Macromol. 2021, 176, 530–539; https://doi.org/10.1016/j.ijbiomac.2021.02.099.Search in Google Scholar PubMed

19. Roy, S.; Rhim, J. W.; Jaiswal, L. Bioactive Agar-Based Functional Composite Film Incorporated with Copper Sulfide Nanoparticles. Food Hydrocoll. 2019, 93, 156–166; https://doi.org/10.1016/j.foodhyd.2019.02.034.Search in Google Scholar

20. Zheng, S.; Jin, Z.; Han, C.; Li, J.; Xu, H.; Park, S.; Park, J. O.; Choi, E.; Xu, K. Graphene Quantum Dots-Decorated Hollow Copper Sulfide Nanoparticles for Controlled Intracellular Drug Release and Enhanced Photothermal-Chemotherapy. J. Mater. Sci. 2020, 55 (3), 1184–1197; https://doi.org/10.1007/s10853-019-04062-x.Search in Google Scholar

21. Wang, D.; Li, Q.; Xing, Z.; Yang, X. Copper Sulfide Nanoplates as Nanosensors for Fast, Sensitive and Selective Detection of DNA. Talanta 2018, 178, 905–909; https://doi.org/10.1016/j.talanta.2017.10.039.Search in Google Scholar PubMed

22. Yu, W.; Yu, N.; Wang, Z.; Li, X.; Song, C.; Jiang, R.; Geng, P.; Li, M.; Yin, S.; Chen, Z. Chitosan-mediated Green Synthesis and Folic-Acid Modification of CuS Quantum Dots for Photoacoustic Imaging Guided Photothermal Therapy of Tumor. J. Colloid Interface Sci. 2019, 555, 480–488; https://doi.org/10.1016/j.jcis.2019.08.001.Search in Google Scholar PubMed

23. Cui, Y.; Zhang, J.; Li, G.; Sun, Y.; Zhang, G.; Zheng, W. Ionic Liquid-Assisted Synthesis of rGO Wrapped Three-Dimensional CuS Ordered Nanoerythrocytes with Enhanced Performance for Asymmetric Supercapacitors. Chem. Eng. J. 2017, 325, 424–432; https://doi.org/10.1016/j.cej.2017.05.069.Search in Google Scholar

24. Monshi, A.; Foroughi, M. R.; Monshi, M. R. Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World J. Nano Sci. Eng. 2012, 02 (03), 154–160; https://doi.org/10.4236/wjnse.2012.23020.Search in Google Scholar

25. Christopher, D.; Anbalagan, A.; Govindarajan, V. U.; Muthuraman, M. S. Biofabrication of Copper Oxide Nanoparticles Incorporated Chitosan/Gelatin Films for Food Packaging Applications. Biomass Conver. Bior. 2024, https://doi.org/10.1007/s13399-024-05442-3.Search in Google Scholar

26. Vinodhini, P. A.; K, S.; Thandapani, G.; P, N. S.; Jayachandran, V.; Sukumaran, A. FTIR, XRD and DSC Studies of Nanochitosan, Cellulose Acetate and Polyethylene Glycol Blend Ultrafiltration Membranes. Int. J. Biol. Macromol. 2017, 104 (Pt B), 1721–1729; https://doi.org/10.1016/j.ijbiomac.2017.03.122.Search in Google Scholar PubMed

27. Park, P. J.; Je, J. Y.; Kim, S. K. Free Radical Scavenging Activities of Differently Deacetylated Chitosans Using an ESR Spectrometer. Carbohydr. Polym. 2004, 55 (1), 17–22; https://doi.org/10.1016/j.carbpol.2003.05.002.Search in Google Scholar

28. Ren, L.; Yan, X.; Zhou, J.; Tong, J.; Su, X. Influence of Chitosan Concentration on Mechanical and Barrier Properties of Corn Starch/chitosan Films. Int. J. Biol. Macromol. 2017, 105 (Pt 3), 1636–1643; https://doi.org/10.1016/j.ijbiomac.2017.02.008.Search in Google Scholar PubMed

29. Zhang, X.; Shi, X.; Ma, L.; Pang, X.; Li, L. Preparation of Chitosan Stacking Membranes for Adsorption of Copper Ions. Polymers (Basel) 2019, 11 (9), 1463; https://doi.org/10.3390/polym11091463.Search in Google Scholar PubMed PubMed Central

30. Oun, A. A.; Rhim, J. W. Carrageenan-based Hydrogels and Films: Effect of ZnO and CuO Nanoparticles on the Physical, Mechanical, and Antimicrobial Properties. Food Hydrocoll. 2017, 67, 45–53; https://doi.org/10.1016/j.foodhyd.2016.12.040.Search in Google Scholar

31. Rudke, A. R.; Zanella, E.; Stambuk, B. U.; de Andrade, C. J.; Ferreira, S. R. S. Deconstruction of Kappaphycus Alvarezii Biomass by Pressurized Solvents to Increase the Carrageenan Purity. Food Hydrocoll. 2024, 155, 110204; https://doi.org/10.1016/j.foodhyd.2024.110204.Search in Google Scholar

32. Zhang, X.; Li, Y. B.; Zuo, Y.; Lv, G. Y.; Mu, Y. H.; Li, H. Morphology, Hydrogen-Bonding and Crystallinity of Nano-Hydroxyapatite/polyamide 66 Biocomposites. Compos. Part. A-Appl. S. 2007, 38 (3), 843–848; https://doi.org/10.1016/j.compositesa.2006.08.002.Search in Google Scholar

33. Amri, A.; Hasan, K.; Taha, H.; Rahman, M. M.; Herman, S.; Andrizal; Awaltanova, E.; Wantono, I.; Kabir, H.; Yin, C. Y.; Ibrahim, K.; Bahri, S.; Frimayanti, N.; Hossain, M. A.; Jiang, Z. T. Surface Structural Features and Optical Analysis of Nanostructured Cu-Oxide Thin Film Coatings Coated via the Sol-Gel Dip Coating Method. Ceram. Int. 2019, 45 (10), 12888–12894; https://doi.org/10.1016/j.ceramint.2019.03.213.Search in Google Scholar

34. Fathi, M.; Samadi, M.; Abbaszadeh, S.; Nourani, M. R. Fabrication and Characterization of Multifunctional Bio-Safe Films Based on Carboxymethyl Chitosan and Saffron Petal Anthocyanin Reinforced with Copper Oxide Nanoparticles for Sensing the Meat Freshness. J. Polym. Environ. 2022, 30 (11), 4538–4549; https://doi.org/10.1007/s10924-022-02490-6.Search in Google Scholar

35. Ayaz Ahmed, K. B.; Anbazhagan, V. Synthesis of Copper Sulfide Nanoparticles and Evaluation of In Vitro Antibacterial Activity and In Vivo Therapeutic Effect in Bacteria-Infected Zebrafish. RSC Adv. 2017, 7 (58), 36644–36652; https://doi.org/10.1039/c7ra05636b.Search in Google Scholar

36. Liang, Y.; Zhang, J.; Quan, H.; Zhang, P.; Xu, K.; He, J.; Fang, Y.; Wang, J.; Chen, P. Antibacterial Effect of Copper Sulfide Nanoparticles on Infected Wound Healing. Surg. Infect. 2021, 22 (9), 894–902; https://doi.org/10.1089/sur.2020.411.Search in Google Scholar PubMed

Received: 2025-04-23
Accepted: 2025-06-02
Published Online: 2025-06-23
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2025-0076/html
Scroll to top button