Abstract
A novel class of eco-friendly natural Eucommia rubber (ER)/natural rubber (NR) foam composites with tunable shape memory and oil adsorption capabilities has been successfully developed through optimized vulcanization-foaming integration technology. This study utilized comprehensive characterization techniques such as universal testing machine measurements, scanning electron microscopy, and complementary analytical methods to systematically evaluate the foamed composites’ mechanical properties, shape memory behavior, and oil absorption characteristics. Through these advanced characterization approaches, we elucidated the precise influence of foaming agent H concentration on both the macroscopic performance and microstructural evolution of the foam composites. When increasing the foaming agent H content, the cellular morphology exhibited substantial expansion. This structural transformation was accompanied by a marked density reduction from 0.52 g/cm3 to 0.18 g/cm3, concurrently driving a corresponding decline in tensile strength from 11.1 MPa to 4.3 MPa. Beyond these fundamental property variations, the composites manifested distinctive functional characteristics including notable shape memory effects and temperature-responsive oil absorption capabilities. Particularly noteworthy was the precisely tunable oil adsorption performance, which could be strategically modulated through controlled physical state transitions of the composites under thermal stimuli. This thermal responsiveness establishes promising potential for intelligent material applications requiring adaptive oil–water separation functionality.
Acknowledgments
Financial support from National Natural Science Foundation of China (grant No. 22075298), National Key R&D Program of China (2022YFD2301204) is gratefully acknowledged.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Financial support from National Natural Science Foundation of China (grant no. 22075298), National Key R&D Program of China (2022YFD2301204).
-
Data availability: Not applicable.
References
1. Zhang, J.; He, B.; Hu, Y.; Alam, P.; Zhang, H.; Lam, J. W.; Tang, B. Z. Stimuli‐Responsive AIEgens. Adv. Mater. 2021, 33 (32), 2008071; https://doi.org/10.1002/adma.202008071.Search in Google Scholar PubMed
2. Zare, M.; Prabhakaran, M. P.; Parvin, N.; Ramakrishna, S. Thermally-induced Two-Way Shape Memory Polymers: Mechanisms, Structures, and Applications. Chem. Eng. J. 2019, 374, 706–720; https://doi.org/10.1016/j.cej.2019.05.167.Search in Google Scholar
3. Wang, X.; He, Y.; Liu, Y.; Leng, J. Advances in Shape Memory Polymers: Remote Actuation, Multi-Stimuli Control, 4D Printing and Prospective Applications. Mat. Sci. Eng. R. 2022, 151, 100702; https://doi.org/10.1016/j.mser.2022.100702.Search in Google Scholar
4. Dayyoub, T.; Maksimkin, A. V.; Filippova, O. V.; Tcherdyntsev, V. V.; Telyshev, D. V. Shape Memory Polymers as Smart Materials: a Review. Polymers 2022, 14 (17), 3511; https://doi.org/10.3390/polym14173511.Search in Google Scholar PubMed PubMed Central
5. Gopinath, S.; Adarsh, N. N.; Nair, P. R.; Mathew, S. Recent Trends in Thermo-Responsive Elastomeric Shape Memory Polymer Nanocomposites. Polym. Composite. 2023, 44 (8), 4433–4458.10.1002/pc.27464Search in Google Scholar
6. Tariq, A.; Arif, Z. U.; Khalid, M. Y.; Hossain, M.; Rasool, P. I.; Umer, R.; Ramakrishna, S. Recent Advances in the Additive Manufacturing of Stimuli-Responsive Soft Polymers. Adv. Eng. Mater. 2023, 25 (21), 2301074; https://doi.org/10.1002/adem.202301074.Search in Google Scholar
7. Li, T.; Sun, J.; Leng, J.; Liu, Y. An Electrical Heating Shape Memory Polymer Composite Incorporated with Conductive Elastic Fabric. J. Compos. Mater. 2022, 56 (11), 1725–1736; https://doi.org/10.1177/00219983221085630.Search in Google Scholar
8. Wang, T.; Zhao, J.; Weng, C.; Wang, T.; Liu, Y.; Han, Z.; Zhang, Z. A Bidirectionally Reversible Light-Responsive Actuator Based on Shape Memory Polyurethane Bilayer. Compos. Part A-Appl. S. 2021, 144, 106322; https://doi.org/10.1016/j.compositesa.2021.106322.Search in Google Scholar
9. Li, Y.; Goswami, M.; Zhang, Y.; Liu, T.; Zhang, J.; Kessler, M. R.; Wang, L.; Rios, O. Combined Light-And Heat-Induced Shape Memory Behavior of Anthracene-Based Epoxy Elastomers. Sci. Rep-Uk 2020, 10 (1), 20214; https://doi.org/10.1038/s41598-020-77246-0.Search in Google Scholar PubMed PubMed Central
10. Qiao, L.; Liu, C.; Liu, C.; Zong, L.; Gu, H.; Wang, C.; Jian, X. Self-healing, pH-Sensitive and Shape Memory Hydrogels Based on Acylhydrazone and Hydrogen Bonds. Eur. Polym. J. 2022, 162, 110838; https://doi.org/10.1016/j.eurpolymj.2021.110838.Search in Google Scholar
11. Xiao, R.; Huang, W. M. Heating/solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol. Biosci. 2020, 20 (8), 2000108; https://doi.org/10.1002/mabi.202000108.Search in Google Scholar PubMed
12. Li, F.; Liu, Y.; Leng, J. Progress of Shape Memory Polymers and Their Composites in Aerospace Applications. Smart Mater. Struct. 2019, 28 (10), 103003; https://doi.org/10.1088/1361-665x/ab3d5f.Search in Google Scholar
13. Zhao, W.; Li, N.; Liu, L.; Leng, J.; Liu, Y. Mechanical Behaviors and Applications of Shape Memory Polymer and its Composites. Appl. Phys. Rev. 2023, 10 (1), 011306; https://doi.org/10.1063/5.0126892.Search in Google Scholar
14. Tan, L. J.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30 (43), 2003062; https://doi.org/10.1002/adfm.202003062.Search in Google Scholar
15. Delaey, J.; Dubruel, P.; Van Vlierberghe, S. Shape-memory Polymers for Biomedical Applications. Adv. Funct. Mater. 2020, 30 (44), 1909047; https://doi.org/10.1002/adfm.201909047.Search in Google Scholar
16. Rokaya, D.; Skallevold, H. E.; Srimaneepong, V.; Marya, A.; Shah, P. K.; Khurshid, Z.; Zafar, M. S.; Sapkota, J. Shape Memory Polymeric Materials for Biomedical Applications: an Update. J. Compos. Sci. 2023, 7 (1), 24; https://doi.org/10.3390/jcs7010024.Search in Google Scholar
17. Biswas, M. C.; Chakraborty, S.; Bhattacharjee, A.; Mohammed, Z. 4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges. Adv. Funct. Mater. 2021, 31 (19), 2100257; https://doi.org/10.1002/adfm.202100257.Search in Google Scholar
18. Wang, Y.; Yu, X.; Liu, R.; Zhi, C.; Liu, Y.; Fan, W.; Meng, J. Shape Memory Active Thermal-Moisture Management Textiles. Compos. Part A-Appl. S. 2022, 160, 107037; https://doi.org/10.1016/j.compositesa.2022.107037.Search in Google Scholar
19. Terryn, S.; Langenbach, J.; Roels, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.-A.; Georgopoulou, A.; Thuruthel, T. G.; Safaei, A.; Ferrentino, P.; Sebastian, T.; Norvez, S.; Iida, F.; Bosman, A. W.; Tournilhac, F.; Clemens, F.; Van Assche, G.; Vanderborght, B. A Review on Self-Healing Polymers for Soft Robotics. Mater. Today 2021, 47, 187–205; https://doi.org/10.1016/j.mattod.2021.01.009.Search in Google Scholar
20. Zhou, Y.; Li, L.; Han, Z.; Li, Q.; He, J.; Wang, Q. Self-healing Polymers for Electronics and Energy Devices. Chem. Rev. 2022, 123 (2), 558–612; https://doi.org/10.1021/acs.chemrev.2c00231.Search in Google Scholar PubMed
21. Hornat, C. C.; Urban, M. W. Shape Memory Effects in Self-Healing Polymers. Prog. Polym. Sci. 2020, 102, 101208; https://doi.org/10.1016/j.progpolymsci.2020.101208.Search in Google Scholar
22. Perera, M. M.; Ayres, N. Dynamic Covalent Bonds in Self-Healing, Shape Memory, and Controllable Stiffness Hydrogels. Polymer Chem 2020, 11 (8), 1410–1423; https://doi.org/10.1039/c9py01694e.Search in Google Scholar
23. Wu, G.; Xie, P.; Yang, H.; Dang, K.; Xu, Y.; Sain, M.; Turng, L. S.; Yang, W. A Review of Thermoplastic Polymer Foams for Functional Applications. J. Mater. Sci. 2021, 56, 11579–11604; https://doi.org/10.1007/s10853-021-06034-6.Search in Google Scholar
24. Tomin, M.; Kmetty, Á. Polymer Foams as Advanced Energy Absorbing Materials for Sports Applications - a Review. J. Appl. Polym. Sci. 2022, 139 (9), 51714; https://doi.org/10.1002/app.51714.Search in Google Scholar
25. Dong, M.; Wang, G.; Zhang, X.; Tan, D.; Ren, J.; Colorado, H.; Hou, H.; Toktarbay, Z.; Guo, Z. An Overview of Polymer Foaming Assisted by Supercritical Fluid. Adv. Compos. Hybrid Ma 2023, 6 (6), 207; https://doi.org/10.1007/s42114-023-00790-6.Search in Google Scholar
26. Li, B.; Zhao, G.; Wang, G.; Zhang, L.; Gong, J.; Shi, Z. Biodegradable PLA/PBS Open-Cell Foam Fabricated by Supercritical CO2 Foaming for Selective Oil-Adsorption. Sep. Purif. Technol. 2021, 257, 117949; https://doi.org/10.1016/j.seppur.2020.117949.Search in Google Scholar
27. You, J.; Xing, H.; Xue, J.; Jiang, Z.; Tang, T. Preparation of Rigid Cross-Linked PVC Foam with Excellent Thermal Insulation through Adding High-Reflectivity IR Opacifier. Compos. Sci. Technol. 2021, 203, 108566; https://doi.org/10.1016/j.compscitech.2020.108566.Search in Google Scholar
28. Zhang, Z. X.; Wang, Y. M.; Zhao, Y.; Zhang, X.; Phule, A. D. A New TPE-Based Foam Material from EPDM/PPB Blends, as a Potential Buffer Energy-Absorbing Material. Express Polym. Lett. 2021, 15 (2); https://doi.org/10.3144/expresspolymlett.2021.10.Search in Google Scholar
29. Sanz-Horta, R.; Martinez-Campos, E.; García, C.; Reinecke, H.; Gallardo, A.; Rodriguez-Hernandez, J.; Elvira, C. Breath Figures Makes Porous the “So-called” Skin Layer Obtained in Polymer Foams Prepared by Supercritical CO2 Treatments. J. Supercrit. Fluid. 2021, 167, 105051.10.1016/j.supflu.2020.105051Search in Google Scholar
30. Perticaroli, S.; Herzberger, J.; Sun, Y.; Nickels, J. D.; Murphy, R. P.; Weigandt, K.; Ray, P. J. Multiscale Microstructure, Composition, and Stability of Surfactant/polymer Foams. Langmuir 2020, 36 (48), 14763–14771; https://doi.org/10.1021/acs.langmuir.0c02704.Search in Google Scholar PubMed
31. Honari, P.; Rahmatabadi, D.; Bayati, A.; Rassi, E.; Ghasemi, I.; Baniassadi, M.; Bodaghi, M.; Baghani, M. Simultaneous 4D Printing and In-Situ Foaming for Tailoring Shape Memory Behaviors in Polylactic Acid Foams. Manuf. Lett. 2025, 43, 33–3; https://doi.org/10.1016/j.mfglet.2024.11.005.Search in Google Scholar
32. Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. 4D Printing of Porous PLA-TPU Structures: Effect of Applied Deformation, Loading Mode and Infill Pattern on the Shape Memory Performance. Phys. Scripta 2024, 99 (2), 025013; https://doi.org/10.1088/1402-4896/ad1957.Search in Google Scholar
33. Mirasadi, K.; Rahmatabadi, D.; Ghasemi, I.; Khodaei, M.; Baniassadi, M.; Baghani, M. Investigating the Effect of ABS on the Mechanical Properties, Morphology, Printability, and 4D Printing of PETG-ABS Blends. Macromol. Mater. Eng. 2024, 309 (6), 2400038; https://doi.org/10.1002/mame.202470011.Search in Google Scholar
34. Wei, X.; Peng, P.; Peng, F.; Dong, J. Natural Polymer Eucommia Ulmoides Rubber: a Novel Material. J. Agr. Food Chem. 2021, 69 (13), 3797–3821; https://doi.org/10.1021/acs.jafc.0c07560.Search in Google Scholar PubMed
35. Chen, Z.; Dong, Q.; Wang, X.; Hu, S.; Yin, D.; Liu, L.; Zhang, J.; Zhao, X. Bio-based Eucommia Ulmoides Gum Composites for High-Performance Engineering Tire Applications. Ind. Crop. Prod. 2024, 208, 117911; https://doi.org/10.1016/j.indcrop.2023.117911.Search in Google Scholar
36. Li, D.; Yang, C.; Huang, Y.; Li, L.; Han, W.; Kang, H.; Yang, F.; Fang, Q. Novel Green Resource Material: Eucommia Ulmoides Gum. Resour. Chem. Mater. 2022, 1 (1), 114–128; https://doi.org/10.1016/j.recm.2022.01.005.Search in Google Scholar
37. Wang, Q.; Xiong, Y. Z.; Dong, F. P. Eucommia Ulmoides Gum-Based Engineering Materials: Fascinating Platforms for Advanced Applications. J. Mater. Sci. 2021, 56, 1855–1878; https://doi.org/10.1007/s10853-020-05345-4.Search in Google Scholar
38. Cao, R.; Deng, L.; Feng, Z.; Zhao, X.; Li, X.; Zhang, L. Preparation of Natural Bio-Based Eucommia Ulmoides Gum/styrene-Butadiene Rubber Composites and the Evaluation of Their Damping and Sound Absorption Properties. Polymer 2021, 213, 123292; https://doi.org/10.1016/j.polymer.2020.123292.Search in Google Scholar
39. Li, D.; Zhou, J.; Kang, H.; Li, L.; Han, W.; Fang, Q.; Yang, F. Synthesis and Properties of an Efficient Self-Healing Material Based on Eucommia Ulmoides Gum. Ind. Crop. Prod. 2022, 187, 115385; https://doi.org/10.1016/j.indcrop.2022.115385.Search in Google Scholar
40. Dong, M.; Zhang, T.; Zhang, J.; Hou, G.; Yu, M.; Liu, L. Mechanism Analysis of Eucommia Ulmoides Gum Reducing the Rolling Resistance and the Application Study in Green Tires. Polym. Test. 2020, 87, 106539; https://doi.org/10.1016/j.polymertesting.2020.106539.Search in Google Scholar
41. Sun, N.; Jiang, Z.; Geng, J.; Xia, L. Ultra-hydrophobic Eucommia Gum Coating with Temperature-Responsive and Shape-Memory Performance. Polymer 2024, 308, 127379; https://doi.org/10.1016/j.polymer.2024.127379.Search in Google Scholar
42. Xia, L.; Ma, Y.; Wang, Q.; Meng, J.; Geng, J. Facile Fabrication of Bio-Based Eucommia Ulmoides Rubber Shape Memory Foams. Polym. Test. 2022, 106, 107455; https://doi.org/10.1016/j.polymertesting.2021.107455.Search in Google Scholar
43. Wang, Q.; Meng, J.; Ma, Y.; Xia, L. Thermally Assisted Self-Healing and Shape Memory Behaviour of Natural Rubber Based Composites. Express Polym. Lett. 2021, 15 (10), 929–939; https://doi.org/10.3144/expresspolymlett.2021.75.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material Properties
- N-aminophthalimide as a novel UV-stabilizer to promote physico-mechanical properties of high-density polyethylene (HDPE)
- A novel double-layer nanofiber with gelatin–kaolin/polyvinylpyrrolidone–thrombin for rapid homeostasis
- Preparation and Assembly
- Preparation of ER/NR foamed composites with adjustable shape memory and oil adsorption properties
- Emerging trends in cryogelation: key factors influencing cryotropic gelation processes
- Preparation of chitosan/nano-copper sulfide/carrageenan bilayer film and its application in strawberry preservation
- A feasible chemo preventive approach involves the use of zinc-coated curcumin with a carrageenan matrix for improved stability, solubility, and bioavailability
- Engineering and Processing
- Controlling surface morphology of spin coated epoxy composites using the Marangoni instability
Articles in the same Issue
- Frontmatter
- Material Properties
- N-aminophthalimide as a novel UV-stabilizer to promote physico-mechanical properties of high-density polyethylene (HDPE)
- A novel double-layer nanofiber with gelatin–kaolin/polyvinylpyrrolidone–thrombin for rapid homeostasis
- Preparation and Assembly
- Preparation of ER/NR foamed composites with adjustable shape memory and oil adsorption properties
- Emerging trends in cryogelation: key factors influencing cryotropic gelation processes
- Preparation of chitosan/nano-copper sulfide/carrageenan bilayer film and its application in strawberry preservation
- A feasible chemo preventive approach involves the use of zinc-coated curcumin with a carrageenan matrix for improved stability, solubility, and bioavailability
- Engineering and Processing
- Controlling surface morphology of spin coated epoxy composites using the Marangoni instability