Abstract
Acrylonitrile-butadiene-styrene (ABS) resin is a widely used engineering plastic at present. Due to its excellent mechanical properties and high fluidity, it is utilized in fused deposition molding (FDM) technology. In this paper, boron nitride nanosheets (BNNS) were prepared by hydrothermal exfoliation and used as nano-fillers for ABS resin, and ABS/BNNS composite wires for FDM printing were prepared by melt blending method. The results showed that BNNS with fewer layers were obtained; the addition of BNNS to the ABS resin matrix could effectively enhance the thermal conductivity of the composites. When the addition amount of BNNS was 15 wt%, the thermal conductivity of the composite increased to 0.369 W/(m K), which was 120.06 % higher than that of pure ABS (0.174 W/(m K)). In addition, BNNS also improves the mechanical properties, thermal stability, and melt flow rate of the composites, thus making ABS composite wires more suitable for FDM printing.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: No. 52175464
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Writing Original Draft, Caifeng Chen; Data Curation, Wuwen Zhong; Resources, Junhao Guo and Kai Liu; Project Administration and Supervision, Andong Wang.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the National Natural Science Foundation of China (no. 52175464).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Sankaravel, S. G., Syed, R. B., Manivachakan, V. In vitro and mechanical characterization of PLA/egg shell biocomposite scaffold manufactured using fused deposition modeling technology for tissue engineering applications. Polym. Compos. 2022, 43, 173–186, https://doi.org/10.1002/pc.26365.Suche in Google Scholar
2. Sabee, M. M. S. M., Tajuddin, N. N. I. A., Ishak, K. M. K., Rusli, A., Abdullah, M. K., Shafiq, M. D., Shuib, R. K., Hamid, Z. A. A. Comparison of physical and mechanical properties of biodegradable polybutylene adipate terephthalate, polycaprolactone, and poly(lactic acid) fabricated via fused deposition modeling and conventional molding. J. Appl. Polym. Sci. 2022, 139, 1–12.10.1002/app.52973Suche in Google Scholar
3. Cano, V. A., Tambuwala, M. M., Hassan, S. S., Barh, D., Aljabali, A. A. A., Birkett, M., Arjunan, A., Serrano, A. Á. Fused deposition modelling: current status, methodology, applications and future prospects. Addit. Manuf. 2021, 47, 102378, https://doi.org/10.1016/j.addma.2021.102378.Suche in Google Scholar
4. Bahnini, I., Rivette, M., Rechia, A., Siadat, A., Elmesbahi, A. Additive manufacturing technology: the status, applications, and prospects. Int. J. Adv. Manuf. Technol. 2018, 97, 147–161, https://doi.org/10.1007/s00170-018-1932-y.Suche in Google Scholar
5. Aloqalaa, Z. Electrically conductive fused deposition modeling filaments: current status and medical applications. Crystals 2022, 12, 1055, https://doi.org/10.3390/cryst12081055.Suche in Google Scholar
6. Calignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., Fino, P. Overview on additive manufacturing technologies. Proc. IEEE 2017, 105, 593–612, https://doi.org/10.1109/jproc.2016.2625098.Suche in Google Scholar
7. Chen, H., Zhuo, F., Zhou, J., Liu, Y., Zhang, J. B., Dong, S. R., Liu, X. Q., Elmarakbi, A., Duan, H. G., Fu, Y. Q. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 2023, 464, 142576, https://doi.org/10.1016/j.cej.2023.142576.Suche in Google Scholar
8. Roudný, P., Syrový, T. Thermal conductive composites for FDM 3D printing: a review, opportunities and obstacles, future directions. J. Manuf. Process. 2022, 83, 667–677, https://doi.org/10.1016/j.jmapro.2022.09.026.Suche in Google Scholar
9. Osman, A., Lu, J. 3D printing of polymer composites to fabricate wearable sensors: a comprehensive review. Mater. Sci. Eng., R 2023, 154, 100734, https://doi.org/10.1016/j.mser.2023.100734.Suche in Google Scholar
10. Camargo, J. C., Machado, Á. R., Almeida, E. C., Silva, E. F. M. S. Mechanical properties of PLA-graphene filament for FDM 3D printing. Int. J. Adv. Manuf. Technol. 2019, 103, 2423–2443, https://doi.org/10.1007/s00170-019-03532-5.Suche in Google Scholar
11. Spinelli, G., Lamberti, P., Tucci, V., Kotsilkova, R., Ivanov, E., Menseidov, D., Naddeo, C., Romano, V., Guadagno, L., Adami, R., Meisak, D., Bychanok, D., Kuzhir, P. Nanocarbon/poly(lactic) acid for 3D printing: effect of fillers content on electromagnetic and thermal properties. Materials 2019, 12, 2369, https://doi.org/10.3390/ma12152369.Suche in Google Scholar PubMed PubMed Central
12. Santos, F. A., Rebelo, H., Coutinho, M., Sutherland, L. S., Cismasiu, C., Farina, I., Fraternali, F. Low velocity impact response of 3D printed structures formed by cellular metamaterials and stiffening plates: PLA versus PETg. Compos. Struct. 2021, 256, 113128, https://doi.org/10.1016/j.compstruct.2020.113128.Suche in Google Scholar
13. Farina, I., Singh, N., Colangelo, F., Luciano, R., Bonazzi, G., Fraternali, F. High-performance nylon-6 sustainable filaments for additive manufacturing. Materials 2019, 12, 3955, https://doi.org/10.3390/ma12233955.Suche in Google Scholar PubMed PubMed Central
14. Guadagno, L., Aliberti, F., Longo, R., Raimondo, M., Pantani, R., Sorrentino, A., Catauro, M., Vertuccio, L. Electrical anisotropy controlled heating of acrylonitrile butadiene styrene 3D printed parts. Mater. Des. 2023, 225, 111507, https://doi.org/10.1016/j.matdes.2022.111507.Suche in Google Scholar
15. Hamzah, K. A., Yeoh, C. K., Noor, M. M., Teh, P. L., Aw, Y. Y., Sazali, S., Ibrahim, W. M. A. W. Mechanical properties and thermal and electrical conductivity of 3D printed ABS-copper ferrite composites via 3D printing technique. J. Thermoplast. Compos. Mater. 2022, 35, 3–16, https://doi.org/10.1177/0892705719869405.Suche in Google Scholar
16. Waheed, S., Cabot, J. M., Smejkal, P., Farajikhah, S., Sayyar, S., Innis, P. C., Beirne, S., Barnsley, G., Lewis, T. W., Breadmore, M. C., Paull, B. Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer. ACS Appl. Mater. Interfaces 2019, 11, 4353–4363, https://doi.org/10.1021/acsami.8b18232.Suche in Google Scholar PubMed
17. Shemelya, C., Rosa, A. D. L., Torrado, A. R., Yu, K., Domanowski, J., Bonacuse, P. J., Martin, R. E., Juhasz, M., Hurwitz, F., Wicker, R. B., Conner, B., MacDonald, E., Roberson, D. A. Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites. Addit. Manuf. 2017, 16, 186–196, https://doi.org/10.1016/j.addma.2017.05.012.Suche in Google Scholar
18. Chen, C., Shao, C., Wang, A. Chemical exfoliating of boron nitride into edge-hydroxylated nanosheets. J. Mater. Sci. 2023, 58, 4416–4427, https://doi.org/10.1007/s10853-023-08316-7.Suche in Google Scholar
19. Chen, C., Shao, M., Liu, K., Zhong, W., Djassi, I., Wang, A. Enhanced thermal and electrical properties of photosensitive resin matrix composites with hexagonal boron nitride nanosheets. J. Inorg. Organomet. Polym. Mater. 2023, 33, 319–327, https://doi.org/10.1007/s10904-022-02500-z.Suche in Google Scholar
20. Xu, Q. C., Li, X. X., Chen, Z. X., Li, L., Li, Z. W. Highly thermally conductive polymer-based composites with 3D exfoliated BNNS/functionalized SiC networks prepared by rapid solidification and hot pressing. React. Funct. Polym. 2023, 186, 105539, https://doi.org/10.1016/j.reactfunctpolym.2023.105539.Suche in Google Scholar
21. Liu, Z., Li, J. H., Zhou, C., Zhu, W. H. A molecular dynamics study on thermal and rheological properties of BNNS-epoxy nanocomposites. Int. J. Heat Mass Transfer 2018, 126, 353–362, https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.149.Suche in Google Scholar
22. Hou, J., Li, G. H., Yang, N., Qin, L. L., Grami, M. E., Zhang, Q. X., Wang, N. Y., Qu, X. W. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014, 4, 44282–44290, https://doi.org/10.1039/c4ra07394k.Suche in Google Scholar
23. Gorbachev, R. V., Riaz, I., Nair, R. R., Jalil, R., Britnell, L., Belle, B. D., Hill, E. W., Novoselov, K. S., Watanabe, K., Taniguchi, T., Geim, A. K., Blake, P. Hunting for monolayer boron nitride: optical and Raman signatures. Small 2011, 7, 465–468, https://doi.org/10.1002/smll.201001628.Suche in Google Scholar PubMed
24. Wang, Z. R., Fan, L., Li, R. L., Xu, Y. C., Fu, Q. Preparation of polymer composites with high thermal conductivity by constructing a “double thermal conductive network” via electrostatic spinning. Compos. Commun. 2022, 36, 101371, https://doi.org/10.1016/j.coco.2022.101371.Suche in Google Scholar
25. Dong, J., Cao, L., Li, Y., Wu, Z. Q., Teng, C. Q. Largely improved thermal conductivity of PI/BNNS nanocomposites obtained by constructing a 3D BNNS network and filling it with AgNW as the thermally conductive bridges. Compos. Sci. Technol. 2020, 196, 108242, https://doi.org/10.1016/j.compscitech.2020.108242.Suche in Google Scholar
26. Zhang, Q., Li, Z., Li, X., Yu, L. G., Wu, Z. S. Boron nitride nanosheets decorated by bismuth ferrite particles: preparation, characterization, and effect on flame-retardant performance of epoxy resin. Mater. Res. Express 2018, 5, 095019.10.1088/2053-1591/aad744Suche in Google Scholar
27. Zheng, X., Zhan, Y., Shi, J., Lu, M. G., Wu, K. Improved thermal conductivity and excellent electrical insulation properties of polysiloxane nanocomposite-incorporated functional boron nitride sheets via in situ polymerization. Nanoscale 2023, 15, 13025–13036, https://doi.org/10.1039/d3nr03287f.Suche in Google Scholar PubMed
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Effect of super critical carbon dioxide and alkali treatment on oxygen barrier properties of thermoplastic starch/poly(vinyl alcohol) films
- Promoting antibacterial activity of polyurethane blend films by regulating surface-enrichment of SiO2 bactericidal agent
- Improving anti-aging performance of terminal blend rubberized bitumen by using graft activated crumb rubber
- An experimental investigation of flame retardancy and thermal stability of treated and untreated kenaf fiber reinforced epoxy composites
- Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM
- Development of a high-strength carrageenan fiber with a small amount of aluminum ions pre-crosslinked in spinning solution
- Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax
- Study on the volatilization behavior of monomer and oligomers in polyamide-6 melt by dynamic film–forming device
- Engineering and Processing
- Numerical simulation on the mixing behavior of double-wave screw under speed sinusoidal pulsating enhancement induced by differential drive
- Numerical and experimental studies on the influence of gas pressure on particle size during gas-assisted extrusion of tubes with embedded antibacterial particles
Artikel in diesem Heft
- Frontmatter
- Material Properties
- Effect of super critical carbon dioxide and alkali treatment on oxygen barrier properties of thermoplastic starch/poly(vinyl alcohol) films
- Promoting antibacterial activity of polyurethane blend films by regulating surface-enrichment of SiO2 bactericidal agent
- Improving anti-aging performance of terminal blend rubberized bitumen by using graft activated crumb rubber
- An experimental investigation of flame retardancy and thermal stability of treated and untreated kenaf fiber reinforced epoxy composites
- Preparation and properties of ABS/BNNS composites with high thermal conductivity for FDM
- Development of a high-strength carrageenan fiber with a small amount of aluminum ions pre-crosslinked in spinning solution
- Development and characterization of new formulation of biodegradable emulsified film based on polysaccharides blend and microcrystalline wax
- Study on the volatilization behavior of monomer and oligomers in polyamide-6 melt by dynamic film–forming device
- Engineering and Processing
- Numerical simulation on the mixing behavior of double-wave screw under speed sinusoidal pulsating enhancement induced by differential drive
- Numerical and experimental studies on the influence of gas pressure on particle size during gas-assisted extrusion of tubes with embedded antibacterial particles