Startseite The efficient removal of low concentration hexavalent chromium via combining charged microporous membrane and micellar adsorption filtration
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The efficient removal of low concentration hexavalent chromium via combining charged microporous membrane and micellar adsorption filtration

  • Wu-Shang Yang , Peng Zhang , Shu-Yang Shen , Qian-Wei Su , Ya-Ni Jiang , Jian-Li Wang , Ming-Yong Zhou , Ze-Lin Qiu EMAIL logo und Bao-Ku Zhu EMAIL logo
Veröffentlicht/Copyright: 16. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

It is challenging to effectively purge wastewater containing heavy metal ions at low concentration. In order to remove trace Cr (VI) from wastewater efficiently, a positively charged microporous membrane was prepared by firstly non-solvent induced phase separation (NIPS) of amphiphilic polymer and secondly surface quaternization modification. The morphologies, surface roughness, surface charge, hydrophilicity, and pore size of membranes were characterized. Based on the dual action of micellar adsorption and charge repulsion, when surfactant is 4 mM and Cr (VI) is 60 ppm, the surface quaternization membrane (Q-MPVD) achieves 99.8 % Cr (VI) rejection simultaneously accompanied by a permeability of 100 LMH/bar. Meanwhile, the effects of STAC concentration, Cr (VI) concentration, pH as well as inorganic salt concentration on the composite micellar size, and Cr (VI) rejection performance were investigated, respectively. Moreover, the Q-MPVD membrane shows an excellent separation stability over a wide pH range, indicating its application perspective in engineering process. In summary, this work provided a positively charged membrane with high-efficiency performance for treating practical trace Cr (VI)-containing industrial wastewater.


Corresponding authors: Ze-Lin Qiu, Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China; and International Joint Innovation Center, International Research Center for Functional Polymers, Zhejiang University, Haining 314400, China, E-mail: ; and Bao-Ku Zhu, Department of Polymer Science and Engineering, ERC of Membrane and Water Treatment (MOE), Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou 310027, China, E-mail:

Funding source: National Key R&D program of China

Award Identifier / Grant number: 2017YFC0403701

Funding source: Natural Science Foundation of Zhejiang Province, China

Award Identifier / Grant number: LD22E030006

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors gratefully thank for the financial support from Natural Science Foundation of Zhejiang Province, China (no. LD22E030006) and National Key R&D program of China (no. 2017YFC0403701).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zayed, A. M., Terry, N. Chromium in the environment: factors affecting biological remediation. Plant Soil 2003, 249, 139–156; https://doi.org/10.1023/a:1022504826342.10.1023/A:1022504826342Suche in Google Scholar

2. Mohan, D., Pittman, C. U. Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. J. Hazard. Mater. 2006, 137, 762–811; https://doi.org/10.1016/j.jhazmat.2006.06.060.Suche in Google Scholar PubMed

3. Huang, S.-H., Peng, B., Yang, Z.-H., Chai, L.-Y., Zhou, L.-C. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Trans. Nonferrous Metals Soc. China 2009, 19, 241–248; https://doi.org/10.1016/s1003-6326(08)60259-9.Suche in Google Scholar

4. Rahman, M. S., Molla, A. H., Saha, N., Rahman, A. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chem. 2012, 134, 1847–1854; https://doi.org/10.1016/j.foodchem.2012.03.099.Suche in Google Scholar PubMed

5. Ahemad, M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J. Genet. Eng. Biotechnol. 2015, 13, 51–58; https://doi.org/10.1016/j.jgeb.2015.02.001.Suche in Google Scholar PubMed PubMed Central

6. Engwa, G. A., Ferdinand, P. U., Nwalo, F. N., Unachukwu, M. N. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World: New Tricks for an Old Dog; IntechOpen: London, 2019; p. 10.Suche in Google Scholar

7. Shekhawat, K., Chatterjee, S., Joshi, B. Chromium toxicity and its health hazards. Int. J. Adv. Res 2015, 3, 167–172.Suche in Google Scholar

8. Ukhurebor, K. E., Aigbe, U. O., Onyancha, R. B., Nwankwo, W., Osibote, O. A., Paumo, H. K., Ama, O. M., Adetunji, C. O., Siloko, I. U. Effect of hexavalent chromium on the environment and removal techniques: a review. J. Environ. Manage. 2021, 280, 111809; https://doi.org/10.1016/j.jenvman.2020.111809.Suche in Google Scholar PubMed

9. Patterson, J. W. Waste-water treatment technology. Ann. Arbor. Sc. Pub. Inc. Ann. Arbor, Mich 1975, 40, 257.Suche in Google Scholar

10. Rengaraj, S., Joo, C. K., Kim, Y., Yi, J. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J. Hazard. Mater. 2003, 102, 257–275; https://doi.org/10.1016/s0304-3894(03)00209-7.Suche in Google Scholar PubMed

11. Rengaraj, S., Yeon, K.-H., Moon, S.-H. Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 2001, 87, 273–287; https://doi.org/10.1016/s0304-3894(01)00291-6.Suche in Google Scholar PubMed

12. Mohammadi, T., Moheb, A., Sadrzadeh, M., Razmi, A. Modeling of metal ion removal from wastewater by electrodialysis. Sep. Purif. Technol. 2005, 41, 73–82; https://doi.org/10.1016/j.seppur.2004.04.007.Suche in Google Scholar

13. Mohan, D., Singh, K. P., Singh, V. K. Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Ind. Eng. Chem. Res. 2005, 44, 1027–1042; https://doi.org/10.1021/ie0400898.Suche in Google Scholar

14. Kabay, N., Arda, M., Saha, B., Streat, M. Removal of Cr (VI) by solvent impregnated resins (SIR) containing aliquat 336. React. Funct. Polym. 2003, 54, 103–115; https://doi.org/10.1016/s1381-5148(02)00186-4.Suche in Google Scholar

15. Shi, L., Huang, J., Zeng, G., Zhu, L., Gu, Y., Shi, Y., Yi, K., Li, X. Roles of surfactants in pressure-driven membrane separation processes: a review. Environ. Sci. Pollut. Res. 2019, 26, 30731–30754; https://doi.org/10.1007/s11356-019-06345-x.Suche in Google Scholar PubMed

16. Zularisam, A., Ismail, A., Salim, R. Behaviours of natural organic matter in membrane filtration for surface water treatment: a review. Desalination 2006, 194, 211–231; https://doi.org/10.1016/j.desal.2005.10.030.Suche in Google Scholar

17. Yao, Z., Li, Y., Cui, Y., Zheng, K., Zhu, B., Xu, H., Zhu, L. Tertiary amine block copolymer containing ultrafiltration membrane with pH-dependent macromolecule sieving and Cr(VI) removal properties. Desalination 2015, 355, 91–98; https://doi.org/10.1016/j.desal.2014.10.030.Suche in Google Scholar

18. Zhou, M.-Y., Zhang, P., Fang, L.-F., Zhu, B.-K., Wang, J.-L., Chen, J.-H., Abdallah, H. A positively charged tight UF membrane and its properties for removing trace metal cations via electrostatic repulsion mechanism. J. Hazard. Mater. 2019, 373, 168–175; https://doi.org/10.1016/j.jhazmat.2019.03.088.Suche in Google Scholar PubMed

19. Chen, M., Jafvert, C. T., Wu, Y., Cao, X., Hankins, N. P. Inorganic anion removal using micellar enhanced ultrafiltration (MEUF), modeling anion distribution and suggested improvements of MEUF: a review. Chem. Eng. J. 2020, 398, 125413; https://doi.org/10.1016/j.cej.2020.125413.Suche in Google Scholar

20. Moreno, M., Mazur, L. P., Weschenfelder, S. E., Regis, R. J., de Souza, R. A., Marinho, B. A., da Silva, A., de Souza, S. M. G. U., de Souza, A. A. U. Water and wastewater treatment by micellar enhanced ultrafiltration: a critical review. J. Water Process Eng. 2022, 46, 102574; https://doi.org/10.1016/j.jwpe.2022.102574.Suche in Google Scholar

21. Sarkar, B. Micellar enhanced ultrafiltration in the treatment of dye wastewater: fundamentals, state-of-the-art and future perspectives. Groundwater Sustain. Dev. 2022, 100730.10.1016/j.gsd.2022.100730Suche in Google Scholar

22. Schwarze, M. Micellar-enhanced ultrafiltration (MEUF)–state of the art. Environ. Sci.: Water Res. Technol. 2017, 3, 598–624; https://doi.org/10.1039/c6ew00324a.Suche in Google Scholar

23. Acero, J. L., Benitez, F. J., Real, F. J., Teva, F. Removal of emerging contaminants from secondary effluents by micellar-enhanced ultrafiltration. Sep. Purif. Technol. 2017, 181, 123–131; https://doi.org/10.1016/j.seppur.2017.03.021.Suche in Google Scholar

24. Baek, K., Yang, J.-W. Cross-flow micellar-enhanced ultrafiltration for removal of nitrate and chromate: competitive binding. J. Hazard. Mater. 2004, 108, 119–123; https://doi.org/10.1016/j.jhazmat.2004.02.001.Suche in Google Scholar PubMed

25. Baek, K., Yang, J.-W. Micellar-enhanced ultrafiltration of chromate and nitrate: binding competition between chromate and nitrate. Desalination 2004, 167, 111–118; https://doi.org/10.1016/j.desal.2004.06.118.Suche in Google Scholar

26. Christian, S., Bhat, S., Tucker, E., Scamehorn, J., El‐Sayed, D. Micellar‐enhanced ultrafiltration of chromate anion from aqueous streams. AIChE J. 1988, 34, 189–194; https://doi.org/10.1002/aic.690340203.Suche in Google Scholar

27. Ghosh, G., Bhattacharya, P. K. Hexavalent chromium ion removal through micellar enhanced ultrafiltration. Chem. Eng. J. 2006, 119, 45–53; https://doi.org/10.1016/j.cej.2006.02.014.Suche in Google Scholar

28. Gzara, L., Dhahbi, M. Removal of chromate anions by micellar-enhanced ultrafiltration using cationic surfactants. Desalination 2001, 137, 241–250; https://doi.org/10.1016/s0011-9164(01)00225-9.Suche in Google Scholar

29. Kamble, S. B., Marathe, K. V. Membrane characteristics and fouling study in MEUF for the removal of chromate anions from aqueous streams. Sep. Sci. Technol. 2005, 40, 3051–3070; https://doi.org/10.1080/01496390500385061.Suche in Google Scholar

30. Keskinler, B., Danis, U., Cakici, A., Akay, G. Chromate removal from water using surfactant-enhanced crossflow filtration. Sep. Sci. Technol. 1997, 32, 1899–1920; https://doi.org/10.1080/01496399708000744.Suche in Google Scholar

31. Singh, S., Matsuura, T., Ramamurthy, P. Treatment of coating plant effluent with an ultrafiltration membrane. Tappi J. 1999, 82, 146–156.Suche in Google Scholar

32. Ulbricht, M., Richau, K., Kamusewitz, H. Chemically and morphologically defined ultrafiltration membrane surfaces prepared by heterogeneous photo-initiated graft polymerization. Colloids Surf. A 1998, 138, 353–366; https://doi.org/10.1016/s0927-7757(98)00236-2.Suche in Google Scholar

33. Tang, B., Xu, T., Gong, M., Yang, W. A novel positively charged asymmetry membranes from poly (2, 6-dimethyl-1, 4-phenylene oxide) by benzyl bromination and in situ amination: membrane preparation and characterization. J. Membr. Sci. 2005, 248, 119–125; https://doi.org/10.1016/j.memsci.2004.09.027.Suche in Google Scholar

34. Knoell, T., Safarik, J., Cormack, T., Riley, R., Lin, S., Ridgway, H. Biofouling potentials of microporous polysulfone membranes containing a sulfonated polyether-ethersulfone/polyethersulfone block copolymer: correlation of membrane surface properties with bacterial attachment. J. Membr. Sci. 1999, 157, 117–138; https://doi.org/10.1016/s0376-7388(98)00365-2.Suche in Google Scholar

35. Bowen, W. R., Doneva, T. A., Yin, H.-B. Separation of humic acid from a model surface water with PSU/SPEEK blend UF/NF membranes. J. Membr. Sci. 2002, 206, 417–429; https://doi.org/10.1016/s0376-7388(01)00786-4.Suche in Google Scholar

36. Hu, W., Chen, Y., Dong, X., Meng, Q.-W., Ge, Q. Positively charged membranes constructed via complexation for chromium removal through micellar-enhanced forward osmosis. Chem. Eng. J. 2021, 420, 129837; https://doi.org/10.1016/j.cej.2021.129837.Suche in Google Scholar

37. Yang, Q., Xie, Y., Zhu, B., Zeng, Y., Zhou, H., Ai, P., Chen, G. Positively charged PVC ultrafiltration membrane via micellar enhanced ultrafiltration for removing trace heavy metal cations. J. Water Process Eng. 2022, 46, 102552; https://doi.org/10.1016/j.jwpe.2021.102552.Suche in Google Scholar

38. Xie, Y., Yang, Q., Chen, Y., Chen, G., Zhu, B., Zhang, P. Preparation of novel positively charged PVC microfiltration membrane and its performance for removing Cr(Ⅵ). Mater. Rep. 2021, 35, 16184–16189.Suche in Google Scholar

39. Nakao, S.-I. Determination of pore size and pore size distribution: 3. Filtration membranes. J. Membr. Sci. 1994, 96, 131–165; https://doi.org/10.1016/0376-7388(94)00128-6.Suche in Google Scholar

40. Guo, Y.-S., Ji, Y.-L., Wu, B., Wang, N.-X., Yin, M.-J., An, Q.-F., Gao, C.-J. High-flux zwitterionic nanofiltration membrane constructed by in-situ introduction method for monovalent salt/antibiotics separation. J. Membr. Sci. 2020, 593, 117441; https://doi.org/10.1016/j.memsci.2019.117441.Suche in Google Scholar

41. Bade, R., Lee, S. H. A review of studies on micellar enhanced ultrafiltration for heavy metals removal from wastewater. J. Water Sustain. 2011, 1, 85–102.Suche in Google Scholar

42. Gecol, H., Ergican, E., Fuchs, A. Molecular level separation of arsenic (V) from water using cationic surfactant micelles and ultrafiltration membrane. J. Membr. Sci. 2004, 241, 105–119; https://doi.org/10.1016/j.memsci.2004.04.026.Suche in Google Scholar

43. Javadian, S., Kakemam, J. Intermicellar interaction in surfactant solutions; a review study. J. Mol. Liq. 2017, 242, 115–128; https://doi.org/10.1016/j.molliq.2017.06.117.Suche in Google Scholar

44. Hartland, G. V., Grieser, F., White, L. R. Surface potential measurements in pentanol–sodium dodecyl sulphate micelles. J. Chem. Soc. Faraday Trans. I 1987, 83, 591–613; https://doi.org/10.1039/f19878300591.Suche in Google Scholar

45. Fernández, M. S., González-Martínez, M. T., Calderón, E. The effect of pH on the phase transition temperature of dipalmitoylphosphatidylcholine-palmitic acid liposomes. Biochim. Biophys. Acta Biomembr. 1986, 863, 156–164; https://doi.org/10.1016/0005-2736(86)90255-5.Suche in Google Scholar PubMed

Received: 2023-03-14
Accepted: 2023-05-05
Published Online: 2023-06-16
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0052/html
Button zum nach oben scrollen