Startseite Molecular dynamics simulation of stretch-induced crystallization of star polymers as compared to their linear counterparts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Molecular dynamics simulation of stretch-induced crystallization of star polymers as compared to their linear counterparts

  • Tongfan Hao EMAIL logo , Wenxue Gao , Jiayu Wang , Zhiping Zhou , Yongqiang Ming und Yijing Nie EMAIL logo
Veröffentlicht/Copyright: 8. Mai 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The linear and star polyethylene during static crystallization and stretch-induced crystallization has been investigated by molecular dynamics simulations. The findings demonstrate that the branching point of the star polymer system does not participate in crystallization, and the crystallization ability of the segments near the branching point and at the end of the chains is inferior. Due to the existence of branching points, the mobility and conformational extension of chain segments are weak, and the entanglement degree is higher than that of linear systems. For stretch-induced crystallization, stretching promotes the extension of molecular chains and arranges them along the stretching direction. The crystal nucleation and growth in linear and star polymer systems are significantly faster than in static crystallization. The mobility of the chain segments close to the branching point is partially enhanced by stretching, while the branching point still substantially affects the chain conformation and segment orientation. It is worth mentioning that we have verified some crucial results that cannot be observed in the experiments at the microscopic scale.


Corresponding authors: Tongfan Hao and Yijing Nie, Research School of Polymeric Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China, E-mail: ,

Award Identifier / Grant number: No. BK20190866

Award Identifier / Grant number: No. 21404050

Award Identifier / Grant number: No. 52173020

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Natural Science Foundation of Jiangsu Province (no. BK20190866) and the National Natural Science Foundation of China (nos. 21404050 and 52173020). This research is also supported by the Open Research Fund of CNMGE Platform & NSCC-TJ (no. CNMGE202101013).

  3. Conflict of interest statement: The authors declare that they do not have any conflicts of commercial or associated interests in connection with the submitted work.

References

1. Liu, J. Y., Zhang, S. J., Zhang, L. Y., Bai, Y. Q. Polymer 2014, 55, 2472–2480. https://doi.org/10.1016/j.polymer.2014.02.024.Suche in Google Scholar

2. Chiu, F. C., Peng, Y., Fu, Q. J. Polym. Res. 2002, 9, 175–181. https://doi.org/10.1023/a:1021339608313.10.1023/A:1021339608313Suche in Google Scholar

3. Tasaka, F., Ohya, Y., Ouchi, T. Macromolecules 2001, 34, 5494–5500. https://doi.org/10.1021/ma010067m.Suche in Google Scholar

4. Hagita, K., Fujiwara, S., Iwaoka, N. J. Chem. Phys. 2019, 150, 074901. https://doi.org/10.1063/1.5080332.Suche in Google Scholar PubMed

5. Li, W., Geng, X. Y., Huang, R., Wang, J. P., Wang, N., Zhang, X. X. Polymers 2018, 10, 172. https://doi.org/10.3390/polym10020172.Suche in Google Scholar PubMed PubMed Central

6. Lotz, B., Miyoshi, T., Cheng, S. Z. D. Macromolecules 2017, 50, 5995–6025. https://doi.org/10.1021/acs.macromol.7b00907.Suche in Google Scholar

7. Zhang, W. A., Zheng, S. X. Polym. Bull. 2007, 58, 767–775. https://doi.org/10.1007/s00289-007-0727-3.Suche in Google Scholar

8. Zhou, C., Wei, Z. Y., Jin, C. H., Wang, Y. S., Yu, Y., Leng, X. F., Li, Y. Polymer 2018, 138, 57–64. https://doi.org/10.1016/j.polymer.2018.01.045.Suche in Google Scholar

9. Zhang, C. X., Wang, B., Chen, Y., Cheng, F., Jiang, S. C. Polymer 2012, 53, 3900–3909. https://doi.org/10.1016/j.polymer.2012.07.002.Suche in Google Scholar

10. Leng, X. F., Ren, Y. Y., Wei, Z. Y., Bian, Y. F., Li, Y. Macromol. Chem. Phys. 2017, 218, 1700178. https://doi.org/10.1002/macp.201700178.Suche in Google Scholar

11. Wang, L., Dong, C. M. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2226–2236. https://doi.org/10.1002/pola.21330.Suche in Google Scholar

12. Ren, Y. Y., Wei, Z. Y., Wu, T., Bian, Y. F., Leng, X. F., Zhou, C., Li, Y. RSC Adv. 2016, 6, 45791. https://doi.org/10.1039/c6ra09289f.Suche in Google Scholar

13. Li, J., Wang, H. X., Kong, L., Zhou, Y., Li, S. Q., Shi, H. F. Macromolecules 2018, 51, 8922–8931. https://doi.org/10.1021/acs.macromol.8b01856.Suche in Google Scholar

14. Song, K., Wu, L. F., Liu, D., Li, L. B., Song, J., Wang, Z. Phys. Chem. Chem. Phys. 2020, 22, 25206–25214. https://doi.org/10.1039/d0cp04964f.Suche in Google Scholar PubMed

15. Habumugisha, J. C., Feng, S. Y., Iqbal, O., Lin, Y. F., An, M. F., Meng, L. P., Wang, D. L., Chen, W., Li, L. B. Polymer 2021, 214, 123234. https://doi.org/10.1016/j.polymer.2020.123234.Suche in Google Scholar

16. Iqbal, O., Habumugisha, J. C., Feng, S. Y., Lin, Y. F., Chen, W., Yu, W. C., Li, L. B. Polymers 2021, 13, 126.10.3390/polym13010126Suche in Google Scholar PubMed PubMed Central

17. Mykhaylyk, O. O., Chambon, P., Graham, R. S., Fairclough, J. P. A., Olmsted, P. D., Ryan, A. J. Macromolecules 2008, 41, 1901–1904. https://doi.org/10.1021/ma702603v.Suche in Google Scholar

18. Graham, R. S., Olmsted, P. D. Phys. Rev. Lett. 2009, 103, 115702. https://doi.org/10.1103/physrevlett.103.115702.Suche in Google Scholar PubMed

19. Wang, D. L., Shao, C. G., Zhao, B. J., Bai, L. G., Wang, X., Yan, T. Z., Li, J. J., Pan, G. Q., Li, L. B. Macromolecules 2010, 43, 2406–2412. https://doi.org/10.1021/ma1000282.Suche in Google Scholar

20. Cui, K. P., Ma, Z., Tian, N., Su, F. M., Liu, D., Li, L. B. Chem. Rev. 2018, 118, 1840–1886. https://doi.org/10.1021/acs.chemrev.7b00500.Suche in Google Scholar PubMed

21. Toki, S., Sics, I., Ran, S., Liu, L., Hsiao, B. S., Murakami, S., Senoo, K., Kohjiya, S. Macromolecules 2002, 35, 6578–6584. https://doi.org/10.1021/ma0205921.Suche in Google Scholar

22. Liu, D., Tian, N., Huang, N. D., Cui, K. P., Wang, Z., Hu, T. T., Yang, H. R., Li, X. Y., Li, L. B. Macromolecules 2014, 47, 6813–6823. https://doi.org/10.1021/ma501482w.Suche in Google Scholar

23. Liu, Y. P., Cui, K. P., Tian, N., Zhou, W. Q., Meng, L. P., Li, L. B., Ma, Z., Wang, X. L. Macromolecules 2012, 45, 2764–2772. https://doi.org/10.1021/ma2026513.Suche in Google Scholar

24. Zhao, J. Y., Feng, S. Y., Zhang, W. W., Chen, W., Sheng, J. F., Yu, W. C., Li, L. B. Macromolecules 2021, 54, 9204–9216. https://doi.org/10.1021/acs.macromol.1c01407.Suche in Google Scholar

25. Su, F. M., Ji, Y. X., Meng, L. P., Wang, Z., Qi, Z. M., Chang, J. R., Ju, J. Z., Li, L. B. Macromolecules 2017, 50, 1991–1997. https://doi.org/10.1021/acs.macromol.6b02544.Suche in Google Scholar

26. Kavassalis, T. A., Sundararajan, P. R. Macromolecules 1993, 26, 4144–4150. https://doi.org/10.1021/ma00068a012.Suche in Google Scholar

27. Xiao, H. Y., Luo, C. F., Yan, D. D., Sommer, J. U. Macromolecules 2017, 50, 9796–9806. https://doi.org/10.1021/acs.macromol.7b01570.Suche in Google Scholar

28. Zhang, W. L., Larson, R. G. Macromolecules 2018, 51, 4762–4769. https://doi.org/10.1021/acs.macromol.8b00958.Suche in Google Scholar

29. Nie, Y. J., Ye, X. B., Zhou, Z. P., Yang, W. M., Tao, L. J. Chem. Phys. 2014, 141, 074901. https://doi.org/10.1063/1.4892757.Suche in Google Scholar PubMed

30. Ye, X. B., Zhou, Z. P., Nie, Y. J., Ma, P., Hao, T. F., Yang, W. M., Lu, H. F. Macromol. Theory Simul. 2016, 25, 9–15. https://doi.org/10.1002/mats.201500042.Suche in Google Scholar

31. Nie, Y. J., Ye, X. B., Zhou, Z. P., Hao, T. F., Yang, W. M., Lu, H. F. RSC Adv. 2015, 5, 17726–17731. https://doi.org/10.1039/c4ra16849f.Suche in Google Scholar

32. Nie, Y. J., Ye, X. B., Qiu, X. Y., Hao, T. F., Liu, R. J., Zhou, Z. P., Wei, Y., Gu, Z. Z., Yang, W. M., Li, S. J. Comp. Mater. Sci. 2018, 142, 200–205. https://doi.org/10.1016/j.commatsci.2017.10.009.Suche in Google Scholar

33. Liu, R. J., Zhou, Z. P., Liu, Y., Liang, Z. P., Ming, Y. Q., Hao, T. F., Nie, Y. J. Chinese J. Polym. Sci. 2020, 38, 1034–1044. https://doi.org/10.1007/s10118-020-2403-0.Suche in Google Scholar

34. Guan, X. C., Wang, Y. H., Wang, J. P., Wu, Y. X., Hu, W. B. Polym. Int. 2019, 68, 225–230. https://doi.org/10.1002/pi.5570.Suche in Google Scholar

35. Zhang, W. L., Larson, R. G. Macromolecules 2020, 53, 7650–7657. https://doi.org/10.1021/acs.macromol.0c01356.Suche in Google Scholar

36. Sefiddashti, M. H. N., Edwards, B. J., Khomami, B. Macromolecules 2020, 53, 10487–10502.10.1021/acs.macromol.0c02144Suche in Google Scholar

37. Tang, X. L., Chen, W., Li, L. B. Macromolecules 2019, 52, 3575–3591. https://doi.org/10.1021/acs.macromol.8b02725.Suche in Google Scholar

38. Xu, T. Y., Nie, C., Peng, F., Sheng, J. F., Li, L. B. Macromolecules 2022, 55, 883–896. https://doi.org/10.1021/acs.macromol.1c02124.Suche in Google Scholar

39. Chen, W., Zhang, Q. L., Zhao, J. Y., Li, L. B. J. Appl. Phys. 2020, 127, 241101. https://doi.org/10.1063/5.0012376.Suche in Google Scholar

40. Xie, C., Tang, X. L., Yang, J. S., Xu, T. Y., Tian, F. C., Li, L. B. Macromolecules 2018, 51, 3994–4002. https://doi.org/10.1021/acs.macromol.8b00325.Suche in Google Scholar

41. Yang, J. S., Tang, X. L., Wang, Z., Xu, T. Y., Tian, F. C., Ji, Y. X., Li, L. B. J. Chem. Phys. 2017, 146, 014901. https://doi.org/10.1063/1.4973382.Suche in Google Scholar PubMed

42. Liu, Z. F., Zhou, Z. P., Ming, Y. Q., Zhang, S. H., Hao, T. F., Nie, Y. J. Polym. 2020, 195, 122442. https://doi.org/10.1016/j.polymer.2020.122442.Suche in Google Scholar

43. Ming, Y. Q., Zhou, Z. P., Yang, J., Hao, T. F., Nie, Y. J. Eur. Polym. J. 2022, 173, 111232. https://doi.org/10.1016/j.eurpolymj.2022.111232.Suche in Google Scholar

44. Paul, W., Yoon, D. Y., Smith, G. D. J. Chem. Phys. 1995, 103, 1702–1709. https://doi.org/10.1063/1.469740.Suche in Google Scholar

45. Tsuji, H., Miyase, T., Tezuka, Y., Saha, S. K. Biomacromolecules 2005, 6, 244–254. https://doi.org/10.1021/bm049552q.Suche in Google Scholar PubMed

46. Najafi, N., Heuzey, M.-C., Carreau, P., Therriault, D. Rheol. Acta 2015, 54, 831–845. https://doi.org/10.1007/s00397-015-0874-7.Suche in Google Scholar

47. Yashiroa, K., Itob, T., Tomita, Y. Int. J. Mech. Sci. 2003, 45, 1863–1876. https://doi.org/10.1016/j.ijmecsci.2003.11.001.Suche in Google Scholar

48. Zhou, K. Y., Li, J. B., Wang, H. X. Ren J. Chin. J. Polym. Sci. 2017, 35, 974–991. https://doi.org/10.1007/s10118-017-1935-4.Suche in Google Scholar

49. Lu, J., Huang, R., Chen, Y., Li, L. B. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3148–3156. https://doi.org/10.1002/polb.20953.Suche in Google Scholar

50. Pantani, R., Santis, F. D., Speranza, V., Titomanlio, G. Polymer 2016, 105, 187–194. https://doi.org/10.1016/j.polymer.2016.10.026.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/polyeng-2023-0026).


Received: 2023-02-03
Accepted: 2023-04-06
Published Online: 2023-05-08
Published in Print: 2023-07-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2023-0026/html
Button zum nach oben scrollen