Molecular dynamics simulation of stretch-induced crystallization of star polymers as compared to their linear counterparts
Abstract
The linear and star polyethylene during static crystallization and stretch-induced crystallization has been investigated by molecular dynamics simulations. The findings demonstrate that the branching point of the star polymer system does not participate in crystallization, and the crystallization ability of the segments near the branching point and at the end of the chains is inferior. Due to the existence of branching points, the mobility and conformational extension of chain segments are weak, and the entanglement degree is higher than that of linear systems. For stretch-induced crystallization, stretching promotes the extension of molecular chains and arranges them along the stretching direction. The crystal nucleation and growth in linear and star polymer systems are significantly faster than in static crystallization. The mobility of the chain segments close to the branching point is partially enhanced by stretching, while the branching point still substantially affects the chain conformation and segment orientation. It is worth mentioning that we have verified some crucial results that cannot be observed in the experiments at the microscopic scale.
Funding source: Natural Science Foundation of Jiangsu Province
Award Identifier / Grant number: No. BK20190866
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: No. 21404050
Award Identifier / Grant number: No. 52173020
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Natural Science Foundation of Jiangsu Province (no. BK20190866) and the National Natural Science Foundation of China (nos. 21404050 and 52173020). This research is also supported by the Open Research Fund of CNMGE Platform & NSCC-TJ (no. CNMGE202101013).
-
Conflict of interest statement: The authors declare that they do not have any conflicts of commercial or associated interests in connection with the submitted work.
References
1. Liu, J. Y., Zhang, S. J., Zhang, L. Y., Bai, Y. Q. Polymer 2014, 55, 2472–2480. https://doi.org/10.1016/j.polymer.2014.02.024.Suche in Google Scholar
2. Chiu, F. C., Peng, Y., Fu, Q. J. Polym. Res. 2002, 9, 175–181. https://doi.org/10.1023/a:1021339608313.10.1023/A:1021339608313Suche in Google Scholar
3. Tasaka, F., Ohya, Y., Ouchi, T. Macromolecules 2001, 34, 5494–5500. https://doi.org/10.1021/ma010067m.Suche in Google Scholar
4. Hagita, K., Fujiwara, S., Iwaoka, N. J. Chem. Phys. 2019, 150, 074901. https://doi.org/10.1063/1.5080332.Suche in Google Scholar PubMed
5. Li, W., Geng, X. Y., Huang, R., Wang, J. P., Wang, N., Zhang, X. X. Polymers 2018, 10, 172. https://doi.org/10.3390/polym10020172.Suche in Google Scholar PubMed PubMed Central
6. Lotz, B., Miyoshi, T., Cheng, S. Z. D. Macromolecules 2017, 50, 5995–6025. https://doi.org/10.1021/acs.macromol.7b00907.Suche in Google Scholar
7. Zhang, W. A., Zheng, S. X. Polym. Bull. 2007, 58, 767–775. https://doi.org/10.1007/s00289-007-0727-3.Suche in Google Scholar
8. Zhou, C., Wei, Z. Y., Jin, C. H., Wang, Y. S., Yu, Y., Leng, X. F., Li, Y. Polymer 2018, 138, 57–64. https://doi.org/10.1016/j.polymer.2018.01.045.Suche in Google Scholar
9. Zhang, C. X., Wang, B., Chen, Y., Cheng, F., Jiang, S. C. Polymer 2012, 53, 3900–3909. https://doi.org/10.1016/j.polymer.2012.07.002.Suche in Google Scholar
10. Leng, X. F., Ren, Y. Y., Wei, Z. Y., Bian, Y. F., Li, Y. Macromol. Chem. Phys. 2017, 218, 1700178. https://doi.org/10.1002/macp.201700178.Suche in Google Scholar
11. Wang, L., Dong, C. M. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 2226–2236. https://doi.org/10.1002/pola.21330.Suche in Google Scholar
12. Ren, Y. Y., Wei, Z. Y., Wu, T., Bian, Y. F., Leng, X. F., Zhou, C., Li, Y. RSC Adv. 2016, 6, 45791. https://doi.org/10.1039/c6ra09289f.Suche in Google Scholar
13. Li, J., Wang, H. X., Kong, L., Zhou, Y., Li, S. Q., Shi, H. F. Macromolecules 2018, 51, 8922–8931. https://doi.org/10.1021/acs.macromol.8b01856.Suche in Google Scholar
14. Song, K., Wu, L. F., Liu, D., Li, L. B., Song, J., Wang, Z. Phys. Chem. Chem. Phys. 2020, 22, 25206–25214. https://doi.org/10.1039/d0cp04964f.Suche in Google Scholar PubMed
15. Habumugisha, J. C., Feng, S. Y., Iqbal, O., Lin, Y. F., An, M. F., Meng, L. P., Wang, D. L., Chen, W., Li, L. B. Polymer 2021, 214, 123234. https://doi.org/10.1016/j.polymer.2020.123234.Suche in Google Scholar
16. Iqbal, O., Habumugisha, J. C., Feng, S. Y., Lin, Y. F., Chen, W., Yu, W. C., Li, L. B. Polymers 2021, 13, 126.10.3390/polym13010126Suche in Google Scholar PubMed PubMed Central
17. Mykhaylyk, O. O., Chambon, P., Graham, R. S., Fairclough, J. P. A., Olmsted, P. D., Ryan, A. J. Macromolecules 2008, 41, 1901–1904. https://doi.org/10.1021/ma702603v.Suche in Google Scholar
18. Graham, R. S., Olmsted, P. D. Phys. Rev. Lett. 2009, 103, 115702. https://doi.org/10.1103/physrevlett.103.115702.Suche in Google Scholar PubMed
19. Wang, D. L., Shao, C. G., Zhao, B. J., Bai, L. G., Wang, X., Yan, T. Z., Li, J. J., Pan, G. Q., Li, L. B. Macromolecules 2010, 43, 2406–2412. https://doi.org/10.1021/ma1000282.Suche in Google Scholar
20. Cui, K. P., Ma, Z., Tian, N., Su, F. M., Liu, D., Li, L. B. Chem. Rev. 2018, 118, 1840–1886. https://doi.org/10.1021/acs.chemrev.7b00500.Suche in Google Scholar PubMed
21. Toki, S., Sics, I., Ran, S., Liu, L., Hsiao, B. S., Murakami, S., Senoo, K., Kohjiya, S. Macromolecules 2002, 35, 6578–6584. https://doi.org/10.1021/ma0205921.Suche in Google Scholar
22. Liu, D., Tian, N., Huang, N. D., Cui, K. P., Wang, Z., Hu, T. T., Yang, H. R., Li, X. Y., Li, L. B. Macromolecules 2014, 47, 6813–6823. https://doi.org/10.1021/ma501482w.Suche in Google Scholar
23. Liu, Y. P., Cui, K. P., Tian, N., Zhou, W. Q., Meng, L. P., Li, L. B., Ma, Z., Wang, X. L. Macromolecules 2012, 45, 2764–2772. https://doi.org/10.1021/ma2026513.Suche in Google Scholar
24. Zhao, J. Y., Feng, S. Y., Zhang, W. W., Chen, W., Sheng, J. F., Yu, W. C., Li, L. B. Macromolecules 2021, 54, 9204–9216. https://doi.org/10.1021/acs.macromol.1c01407.Suche in Google Scholar
25. Su, F. M., Ji, Y. X., Meng, L. P., Wang, Z., Qi, Z. M., Chang, J. R., Ju, J. Z., Li, L. B. Macromolecules 2017, 50, 1991–1997. https://doi.org/10.1021/acs.macromol.6b02544.Suche in Google Scholar
26. Kavassalis, T. A., Sundararajan, P. R. Macromolecules 1993, 26, 4144–4150. https://doi.org/10.1021/ma00068a012.Suche in Google Scholar
27. Xiao, H. Y., Luo, C. F., Yan, D. D., Sommer, J. U. Macromolecules 2017, 50, 9796–9806. https://doi.org/10.1021/acs.macromol.7b01570.Suche in Google Scholar
28. Zhang, W. L., Larson, R. G. Macromolecules 2018, 51, 4762–4769. https://doi.org/10.1021/acs.macromol.8b00958.Suche in Google Scholar
29. Nie, Y. J., Ye, X. B., Zhou, Z. P., Yang, W. M., Tao, L. J. Chem. Phys. 2014, 141, 074901. https://doi.org/10.1063/1.4892757.Suche in Google Scholar PubMed
30. Ye, X. B., Zhou, Z. P., Nie, Y. J., Ma, P., Hao, T. F., Yang, W. M., Lu, H. F. Macromol. Theory Simul. 2016, 25, 9–15. https://doi.org/10.1002/mats.201500042.Suche in Google Scholar
31. Nie, Y. J., Ye, X. B., Zhou, Z. P., Hao, T. F., Yang, W. M., Lu, H. F. RSC Adv. 2015, 5, 17726–17731. https://doi.org/10.1039/c4ra16849f.Suche in Google Scholar
32. Nie, Y. J., Ye, X. B., Qiu, X. Y., Hao, T. F., Liu, R. J., Zhou, Z. P., Wei, Y., Gu, Z. Z., Yang, W. M., Li, S. J. Comp. Mater. Sci. 2018, 142, 200–205. https://doi.org/10.1016/j.commatsci.2017.10.009.Suche in Google Scholar
33. Liu, R. J., Zhou, Z. P., Liu, Y., Liang, Z. P., Ming, Y. Q., Hao, T. F., Nie, Y. J. Chinese J. Polym. Sci. 2020, 38, 1034–1044. https://doi.org/10.1007/s10118-020-2403-0.Suche in Google Scholar
34. Guan, X. C., Wang, Y. H., Wang, J. P., Wu, Y. X., Hu, W. B. Polym. Int. 2019, 68, 225–230. https://doi.org/10.1002/pi.5570.Suche in Google Scholar
35. Zhang, W. L., Larson, R. G. Macromolecules 2020, 53, 7650–7657. https://doi.org/10.1021/acs.macromol.0c01356.Suche in Google Scholar
36. Sefiddashti, M. H. N., Edwards, B. J., Khomami, B. Macromolecules 2020, 53, 10487–10502.10.1021/acs.macromol.0c02144Suche in Google Scholar
37. Tang, X. L., Chen, W., Li, L. B. Macromolecules 2019, 52, 3575–3591. https://doi.org/10.1021/acs.macromol.8b02725.Suche in Google Scholar
38. Xu, T. Y., Nie, C., Peng, F., Sheng, J. F., Li, L. B. Macromolecules 2022, 55, 883–896. https://doi.org/10.1021/acs.macromol.1c02124.Suche in Google Scholar
39. Chen, W., Zhang, Q. L., Zhao, J. Y., Li, L. B. J. Appl. Phys. 2020, 127, 241101. https://doi.org/10.1063/5.0012376.Suche in Google Scholar
40. Xie, C., Tang, X. L., Yang, J. S., Xu, T. Y., Tian, F. C., Li, L. B. Macromolecules 2018, 51, 3994–4002. https://doi.org/10.1021/acs.macromol.8b00325.Suche in Google Scholar
41. Yang, J. S., Tang, X. L., Wang, Z., Xu, T. Y., Tian, F. C., Ji, Y. X., Li, L. B. J. Chem. Phys. 2017, 146, 014901. https://doi.org/10.1063/1.4973382.Suche in Google Scholar PubMed
42. Liu, Z. F., Zhou, Z. P., Ming, Y. Q., Zhang, S. H., Hao, T. F., Nie, Y. J. Polym. 2020, 195, 122442. https://doi.org/10.1016/j.polymer.2020.122442.Suche in Google Scholar
43. Ming, Y. Q., Zhou, Z. P., Yang, J., Hao, T. F., Nie, Y. J. Eur. Polym. J. 2022, 173, 111232. https://doi.org/10.1016/j.eurpolymj.2022.111232.Suche in Google Scholar
44. Paul, W., Yoon, D. Y., Smith, G. D. J. Chem. Phys. 1995, 103, 1702–1709. https://doi.org/10.1063/1.469740.Suche in Google Scholar
45. Tsuji, H., Miyase, T., Tezuka, Y., Saha, S. K. Biomacromolecules 2005, 6, 244–254. https://doi.org/10.1021/bm049552q.Suche in Google Scholar PubMed
46. Najafi, N., Heuzey, M.-C., Carreau, P., Therriault, D. Rheol. Acta 2015, 54, 831–845. https://doi.org/10.1007/s00397-015-0874-7.Suche in Google Scholar
47. Yashiroa, K., Itob, T., Tomita, Y. Int. J. Mech. Sci. 2003, 45, 1863–1876. https://doi.org/10.1016/j.ijmecsci.2003.11.001.Suche in Google Scholar
48. Zhou, K. Y., Li, J. B., Wang, H. X. Ren J. Chin. J. Polym. Sci. 2017, 35, 974–991. https://doi.org/10.1007/s10118-017-1935-4.Suche in Google Scholar
49. Lu, J., Huang, R., Chen, Y., Li, L. B. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 3148–3156. https://doi.org/10.1002/polb.20953.Suche in Google Scholar
50. Pantani, R., Santis, F. D., Speranza, V., Titomanlio, G. Polymer 2016, 105, 187–194. https://doi.org/10.1016/j.polymer.2016.10.026.Suche in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/polyeng-2023-0026).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material Properties
- A fundamental approach to determine the impact of aramid and carbon fibers on durability and tribological performance of different polymer composites demonstrated in gear transmission process
- Structural characters of biaxially stretched polypropylene films and the relevant electrical insulating properties
- Preparation and Assembly
- The consequences of removing fluorinated compounds from rigid contact lenses
- Electrosprayed low toxicity polycaprolactone microspheres from low concentration solutions
- Engineering and Processing
- Molecular dynamics simulation of stretch-induced crystallization of star polymers as compared to their linear counterparts
- Additive manufactured parts produced by selective laser sintering technology: porosity formation mechanisms
- The efficient removal of low concentration hexavalent chromium via combining charged microporous membrane and micellar adsorption filtration
Artikel in diesem Heft
- Frontmatter
- Material Properties
- A fundamental approach to determine the impact of aramid and carbon fibers on durability and tribological performance of different polymer composites demonstrated in gear transmission process
- Structural characters of biaxially stretched polypropylene films and the relevant electrical insulating properties
- Preparation and Assembly
- The consequences of removing fluorinated compounds from rigid contact lenses
- Electrosprayed low toxicity polycaprolactone microspheres from low concentration solutions
- Engineering and Processing
- Molecular dynamics simulation of stretch-induced crystallization of star polymers as compared to their linear counterparts
- Additive manufactured parts produced by selective laser sintering technology: porosity formation mechanisms
- The efficient removal of low concentration hexavalent chromium via combining charged microporous membrane and micellar adsorption filtration