Startseite Tribological properties of organotin compound modified UHMWPE
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tribological properties of organotin compound modified UHMWPE

  • Tian Yang , Haiping Xu , Yongliang Jin , Ke Huang , Jiesong Tu , Dan Jia , Shengpeng Zhan , Lixin Ma und Haitao Duan EMAIL logo
Veröffentlicht/Copyright: 12. August 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A range of ultra-high molecular weight polyethylene (UHMWPE)/tetraphenyltin (Ph4Sn) nanocomposites were fabricated by hot-pressing. The surface hardness and crystallinity of composites were studied. It revealed that the surface hardness of the composites decreased slightly, and the changing trend of crystallinity was consistent with the hardness. The tribological properties of composites under seawater lubricating conditions were investigated. The experimental results showed that the friction coefficients of the composites almost keep the same but the wear reduced sharply. With the increases of Ph4Sn content, the wear of composites first decreases significantly and then increases, meanwhile the friction coefficient remains basically unchanged. The dominant wear mechanism has changed from adhesive wear to plastic deformation and finally to abrasive wear. The addition of Ph4Sn particles reduces the sensitivity of the Ph4Sn/UHMWPE composites to water and transfers the load to the UHMWPE network, resulting in the wear resistance improved.


Corresponding author: Haitao Duan, State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection, Wuhan, Hubei, 430030, China, E-mail:

Award Identifier / Grant number: 2018YFB0703801

Award Identifier / Grant number: 2017AAA119

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by the National Key Research and Development Program of China (grant no. 2018YFB0703801) and the Major Technology Innovation of Hubei Province (grant no. 2017AAA119).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest regarding this article.

  4. Data availability: All data generated or analyzed during this study are included in this article.

References

1. Linjing, X., Jinxiang, Y., Ran, L. Lubric. Eng. 2009, 2, 90–93.Suche in Google Scholar

2. Jianzhang, W., Fengyuan, Y., Qunji, X. Wear 2009, 267, 1634–1641.10.1016/j.wear.2009.06.015Suche in Google Scholar

3. Sviridyonk, A. I. Tribol. Int. 1991, 24, 37–43; https://doi.org/10.1016/0301-679x(91)90061-d.Suche in Google Scholar

4. Xian, Q. P., Qi, H. W., Hai, J. W. J. Mater. Sci. Eng. 2004, 22, 446–451.Suche in Google Scholar

5. Xiong, D., Gao, Z., Jin, Z. Surf. Coating. Technol. 2007, 201, 6847–6850; https://doi.org/10.1016/j.surfcoat.2006.09.043.Suche in Google Scholar

6. Wang, Y., Yin, Z., Li, H., Gao, G., Zhang, X. Wear 2017, 380–381, 42–51; https://doi.org/10.1016/j.wear.2017.03.006.Suche in Google Scholar

7. Tong, J., Ma, Y., Jiang, M. Wear 2003, 255, 734–741; https://doi.org/10.1016/s0043-1648(03)00221-7.Suche in Google Scholar

8. Golchin, A., Villain, A., Emami, N. Tribol. Int. 2017, 110, 195–200; https://doi.org/10.1016/j.triboint.2017.01.016.Suche in Google Scholar

9. Golchin, A., Wikner, A., Emami, N. Tribol. Int. 2016, 95, 156–161; https://doi.org/10.1016/j.triboint.2015.11.023.Suche in Google Scholar

10. Litwin, W. Tribol. Int. 2016, 103, 352–358; https://doi.org/10.1016/j.triboint.2016.06.044.Suche in Google Scholar

11. Wang, Q., Liu, J., Ge, S. JBE 2009, 6, 378–386; https://doi.org/10.1016/s1672-6529(08)60139-0.Suche in Google Scholar

12. Xiong, D., Lin, J., Fan, D.., Jin, Z. J. J. Mater. Sci. Mater. Med. 2007, 18, 2131–2135; https://doi.org/10.1007/s10856-007-3199-y.Suche in Google Scholar PubMed

13. Otto, C., Handge, U. A., Georgopanos, P.., Aschenbrenner, O., Kerwitz, J., Abetz, C., Metze, A., Abetz, V. Macromol. Mater. Eng. 2017, 302, 1600405; https://doi.org/10.1002/mame.201600405.Suche in Google Scholar

14. Puértolas, J. A., Kurtz, S. M. J. Mech. Behav. Biomed. 2014, 39, 129–145; https://doi.org/10.1016/j.jmbbm.2014.06.013.Suche in Google Scholar PubMed

15. Cho, M. H., Bahadur, S., Pogosian, A. K. Wear 2005, 258, 1825–1835; https://doi.org/10.1016/j.wear.2004.12.017.Suche in Google Scholar

16. Ozimina, D., Kajdas, C. ASLE Trans. 1986, 30, 508–519; https://doi.org/10.1080/05698198708981786.Suche in Google Scholar

17. Yao, J., Xu, Z. Tribol. Lett. 1997, 3, 277–281; https://doi.org/10.1023/a:1019181105562.10.1023/A:1019181105562Suche in Google Scholar

18. Ozimina, D., Kajdas, C. Lubric. Sci. 1991, 4, 25–33.10.1002/ls.3010040104Suche in Google Scholar

19. Tsvetkov, O. N. In Proc. 2nd Tribol. Congr. Eurotrib’77, Vol. 2, 1977; pp. 72.1–72.4.10.1016/S0016-5085(77)80306-5Suche in Google Scholar

20. Lieutenant, J. L. J. Am. Soc. Nav. Eng. 1916.Suche in Google Scholar

21. Karuppiah, K. S. K., Bruck, A. L., Sundararajan, S., Wang, J. Lin, Z. Q., Xu, Z. H., Li, X. D. Acta Biomater. 2008, 4, 1401–1410; https://doi.org/10.1016/j.actbio.2008.02.022.Suche in Google Scholar PubMed

22. Lagarde, M., De Paz, A., Del Grosso, M. F.., Fasce, D., Dommarco, R., Laino, S., Fasce, Laura A. Surf. Coating. Technol. 2014, 258, 293–299; https://doi.org/10.1016/j.surfcoat.2014.09.010.Suche in Google Scholar

23. Gracias, D. H., Somorjai, G. A. Macromolecules 1998, 31, 1269–1276; https://doi.org/10.1021/ma970683b.Suche in Google Scholar

Received: 2021-03-03
Accepted: 2021-07-11
Published Online: 2021-08-12
Published in Print: 2021-10-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0032/html
Button zum nach oben scrollen