Startseite Effect of fiber content on the layer structure formation of fibers inside injection-molded products using short glass fiber-reinforced materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of fiber content on the layer structure formation of fibers inside injection-molded products using short glass fiber-reinforced materials

  • Senji Hamanaka EMAIL logo , Chisato Nonomura , Thanh Binh Nguyen Thi und Atsushi Yokoyama
Veröffentlicht/Copyright: 25. Februar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study aims to clarify the relationship between the layer structure transition of fibers caused by the change in the flow field and the thermal properties and fiber interaction when the glass fiber content is changed. Polyamide 6 samples with different short glass fiber contents were prepared, and changes in layer structure during the flow process of injection molding were compared using X-ray computed tomography. An injection-molding simulation was performed to compare the changes in the layer structure of fibers during the flow process, and the temperature distribution and shear rate distribution were obtained by numerical analysis. Furthermore, the effect of fiber interaction on the layer structure transition of fibers was considered using a relaxation function composed of the fiber content, fiber shape factor, and strain rate.


Corresponding author: Atsushi Yokoyama, Department of Advanced Fibro-Science, Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto606-8585, Japan, E-mail:

Acknowledgments

We would like to thank T. Wakano and Y. Tanida who belong to the Kyoto Prefecture Textile Machinery & Metals Promotion Center for the assistance with the experiments and for useful discussions.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Fujiyama, M., Awaya, H., Kimura, S. J. Appl. Polym. Sci. 1977, 21, 3291–3309; https://doi.org/10.1002/app.1977.070211209.Suche in Google Scholar

2. Xia, M., Hamada, H., Maekawa, Z. Int. Polym. Process. 1995, 10, 74–81; https://doi.org/10.3139/217.950074.Suche in Google Scholar

3. Fu, S. Y., Hu, X., Yue, C. Y. Compos. Sci. Technol. 1999, 59, 1533–1542; https://doi.org/10.1016/s0266-3538(99)00022-6.Suche in Google Scholar

4. Hamanaka, S., Nonomura, C., Thi, T. B. N., Yokoyama, A. J. Polym. Eng. 2019, 39, 653–660; https://doi.org/10.1515/polyeng-2018-0371.Suche in Google Scholar

5. Bay, R. S., Tucker, C. L. Polym. Compos. 1992c, 13, 332–341; https://doi.org/10.1002/pc.750130410.Suche in Google Scholar

6. Shen, H., Nutt, S., Hull, D. Compos. Sci. Technol. 2004, 64, 2113–2120; https://doi.org/10.1016/j.compscitech.2004.03.003.Suche in Google Scholar

7. Thi, T. B. N., Morioka, M., Yokoyama, A., Hamanaka, S., Yamashita, K., Nonomura, C. J. Mater. Process. Technol. 2015, 219, 1–9.10.1016/j.jmatprotec.2014.11.048Suche in Google Scholar

8. Jørgensen, J. K., Andreassen, E., Salaberger, D. Polym. Compos. 2019, 40, 615–629. https://doi.org/10.1002/pc.24698.Suche in Google Scholar

9. Hamanaka, S., Yamashita, K., Nonomura, C., Thi, T. B. N., Wakano, T., Yokoyama, A. AIP Conf. Proc. 2017, 1914. http://www.ncbi.nlm.nih.gov/pubmed/140011.Suche in Google Scholar

10. Modlen, G. F. J. Mater. Sci. 1969, 4, 283–289; https://doi.org/10.1007/bf00550396.Suche in Google Scholar

11. Vincent, M., Agassant, J. F. Rheol. Acta 1985, 24, 603–610; https://doi.org/10.1007/bf01332594.Suche in Google Scholar

12. Hamanaka, S., Nonomura, C., Yokoyama, A. J. Polym. Eng. 2019, 40, 30–37; https://doi.org/10.1515/polyeng-2019-0208.Suche in Google Scholar

13. Folgar, F., Tucker, C. L.III. J. Reinforc. Plast. Compos. 1984, 3, 98–119; https://doi.org/10.1177/073168448400300201.Suche in Google Scholar

14. Huynh, H. M. Improved fiber orientation predictions for injection-molded composites. Ph.D. Dissertation, University of Illinois, Urbana-Champaign, 2001.Suche in Google Scholar

15. Wang, J., O’Gara, J. F., Tucker, C. L.III. J. Rheol. 2008, 52, 1179–1200; https://doi.org/10.1122/1.2946437.Suche in Google Scholar

16. Ranganathan, S., Advani, S. G. J. Rheol. 1991, 35, 1499–1522; https://doi.org/10.1122/1.550244.Suche in Google Scholar

17. Phan-Thien, N., Fan, X. J., Tanner, R. I., Zheng, R. J. Non-Newton. Fluid 2002, 103, 251–260; https://doi.org/10.1016/s0377-0257(02)00006-x.Suche in Google Scholar

18. Thi, T. B. N. A numerical approach for the injection molding process of short-fiber-reinforced composites with considering fiber orientation. Ph.D. Dissertation, Kyoto Institute of Technology, Kyoto, 2015.Suche in Google Scholar

19. Thi, T. B. N., Yokoyama, A., Ota, K., Kodama, K., Yamashita, K., Isogai, Y., Nonomura, C. AIP Conf. Proc. 2014, 1593, 571–577.Suche in Google Scholar

20. Crowson, R. J., Folkes, M. J., Bright, P. F. Polym. Eng. Sci. 1980, 20, 925–933; https://doi.org/10.1002/pen.760201403.Suche in Google Scholar

Received: 2020-10-06
Accepted: 2020-12-20
Published Online: 2021-02-25
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0272/html
Button zum nach oben scrollen