Abstract
Imidazolium functionalized polymer electrolytes for the electrochemical reduction of gaseous CO2 (ERGC) were studied for the first time in a developed reactor at room temperature and atmospheric pressure. It was found that reaction environment favors the CO2 reduction reaction by overcoming the mass transfer of CO2 with the use of imidazolium fixed functional groups. The selectivity and Faradaic efficiency of products formed during ERGC is enhanced due to the modified functional groups in the solid polymer matrix. This work may open up new research opportunities for the conversion of gaseous CO2 to green fuels.
Funding source: Science and Engineering Research Board
Award Identifier / Grant number: ECR/2016/001340
Author contributions: AK and LMA worked on conceptualization, methodology validation, development and characterization of SPE, ERGC experiments, analysis of products using GC, original draft preparation, writing, review and editing, supervision, project administration, funding acquisition. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The authors gratefully acknowledge the financial support from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, under its Early Career Research Award Scheme, for the above project (ECR/2016/001340).
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Intergovernmental Panel on Climate Change. IPCC Fifth Assessment Report (AR5) Observed Climate Change Impacts Database; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, 2017.Search in Google Scholar
2. Aresta, M., Dibenedetto, A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans. 2007, 28, 2975–2992; https://doi.org/10.1039/b700658f.Search in Google Scholar
3. Xu, S., Carter, E. A. Theoretical insights into heterogeneous (photo) electrochemical CO2 reduction. Chem. Rev. 2018, 119, 6631–6669; https://doi.org/10.1021/acs.chemrev.8b00481.Search in Google Scholar
4. Zheng, Y., Vasileff, A., Zhou, X., Jiao, Y., Jaroniec, M., Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659; https://doi.org/10.1021/jacs.9b02124.Search in Google Scholar
5. Zhang, W., Hu, Y., Ma, L., Zhu, G., Wang, Y., Xue, X., Chen, R., Yang, S., Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275–1700298; https://doi.org/10.1002/advs.201700275.Search in Google Scholar
6. Kibria, M. G., Edwards, J. P., Gabardo, C. M., Dinh, C. T., Seifitokaldani, A., Sinton, D., Sargent, E. H. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. J. Adv. Mater. 2019, 31, 1807166–1807189; https://doi.org/10.1002/adma.201807166.Search in Google Scholar
7. Nitopi, S., Bertheussen, E., Scott, S. B., Liu, X., Engstfeld, A. K., Horch, S., Seger, B., Stephens, I. E., Chan, K., Hahn, C., Nørskov, J. K. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672; https://doi.org/10.1021/acs.chemrev.8b00705.Search in Google Scholar
8. Malik, K., Singh, S., Basu, S., Verma, A. Electrochemical reduction of CO2 for synthesis of green fuel. WIREs Energy Environ. 2017, 6(4 e244), 1–17; https://doi.org/10.1002/wene.255.Search in Google Scholar
9. Chang, X., Wang, T., Zhao, Z. J., Yang, P., Greeley, J., Mu, R., Zhang, G., Gong, Z., Luo, Z., Chen, J., Cui, Y. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions. Angew. Chem. Int. Ed. 2018, 57, 15415–15419; https://doi.org/10.1002/anie.201805256.Search in Google Scholar
10. Boutin, E., Wang, M., Lin, J. C., Mesnage, M., Mendoza, D., Lassalle‐Kaiser, B., Hahn, C., Jaramillo, T. F., Robert, M. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 2019, 58, 16172–16176; https://doi.org/10.1002/anie.201909257.Search in Google Scholar
11. Jiang, C., Nichols, A. W., Walzer, J. F., Machan, C. W. Electrochemical CO2 reduction in a continuous non-aqueous flow cell with [Ni (cyclam)]2+. Inorg. Chem. 2020, 59, 1883–1892; https://doi.org/10.1021/acs.inorgchem.9b03171.Search in Google Scholar
12. Ting, L. R., García‐Muelas, R., Martín, A. J., Veenstra, F. L., Chen, S. T., Peng, Y., Per, E. Y., Pablo‐García, S., López, N., Pérez‐Ramírez, J., Yeo, B.S. Electrochemical reduction of carbon dioxide to 1‐butanol on oxide‐derived copper. Angew. Chem. Int. Ed. 2020, 59, 21072–21079; https://doi.org/10.1002/anie.202008289.Search in Google Scholar
13. Yoshio, H., Katsuhei, K., Shin, S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogen carbonate solution. Chem. Lett. 1985, 14, 1695–1698.10.1246/cl.1985.1695Search in Google Scholar
14. Ghosh, S., Ramaprabhu, S. Boron and nitrogen co-doped carbon nanosheets encapsulating nano iron as an efficient catalyst for electrochemical CO2 reduction utilizing a proton exchange membrane CO2 conversion cell. J. Colloid Interface Sci. 2020, 559, 169–177; https://doi.org/10.1016/j.jcis.2019.10.030.Search in Google Scholar
15. Lee, J., Lim, J., Roh, C. W., Whang, H. S., Lee, H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J. CO2 Util. 2019, 31, 244–250; https://doi.org/10.1016/j.jcou.2019.03.022.Search in Google Scholar
16. Subramanian, K., Asokan, K., Jeevarathinam, D., Chandrasekaran, M. Electrochemical membrane reactor for the reduction of carbondioxide to formate. J. Appl. Electrochem. 2007, 37, 255–260; https://doi.org/10.1007/s10800-006-9252-6.Search in Google Scholar
17. Aeshala, L. M., Uppaluri, R. G., Verma, A. Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel. J. CO2 Util. 2013, 3, 49–55; https://doi.org/10.1016/j.jcou.2013.09.004.Search in Google Scholar
18. Aeshala, L. M., Uppaluri, R., Verma, A. Electrochemical conversion of CO2 to fuels: tuning of the reaction zone using suitable functional groups in a solid polymer electrolyte. Phys. Chem. Chem. Phys. 2014, 16, 7588–7594; https://doi.org/10.1039/c4cp02389g.Search in Google Scholar
19. Xia, Z., Qiu, W., Bao, H., Yang, B., Lei, L., Xu, Z., Li, Z. Electrochemical reduction of gaseous CO2 with a catechol and polyethyleneimine co-deposited polypropylene membrane. Electrochem. Commun. 2016, 71, 1–4; https://doi.org/10.1016/j.elecom.2016.07.009.Search in Google Scholar
20. Kutz, R. B., Chen, Q., Yang, H., Sajjad, S. D., Liu, Z., Masel, I. R. Sustainion imidazolium‐functionalized polymers for carbon dioxide electrolysis. Energy Technol. 2017, 5, 929–936; https://doi.org/10.1002/ente.201600636.Search in Google Scholar
21. Gabardo, C. M., O’Brien, C. P., Edwards, J. P., McCallum, C., Xu, Y., Dinh, C. T., Li, J., Sargent, E. H., Sinton, D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 2019, 3, 2777–2791; https://doi.org/10.1016/j.joule.2019.07.021.Search in Google Scholar
22. Aeshala, L. M., Rahman, S. U., Verma, A. Effect of solid polymer electrolyte on electrochemical reduction of CO2. Separ. Purif. Technol. 2012, 94, 131–137; https://doi.org/10.1016/j.seppur.2011.12.030.Search in Google Scholar
23. Shroti, N., Barbora, L., Verma, A. Neodymium triflate modified nafion composite membrane for reduced alcohol permeability in direct alcohol fuel cell. Int. J. Hydrogen Energy 2011, 36, 14907–14913; https://doi.org/10.1016/j.ijhydene.2011.03.030.Search in Google Scholar
24. Kaczur, J. J., Yang, H., Liu, Z., Sajjad, S. D., Masel, R. I. Carbon dioxide and water electrolysis using new alkaline stable anion membranes. Front. Chem. 2018, 6, 263–278; https://doi.org/10.3389/fchem.2018.00263.Search in Google Scholar
25. Yin, Z., Peng, H., Wei, X., Zhou, H., Gong, J., Huai, M., Xiao, L., Wang, G., Lu, J., Zhuang, L. An alkaline polymer electrolyte CO2 electrolyzer operated with pure water. Energy Environ. Sci. 2019, 12, 2455–2462; https://doi.org/10.1039/c9ee01204d.Search in Google Scholar
26. Iijima, G., Kitagawa, T., Katayama, A., Inomata, T., Yamaguchi, H., Suzuki, K., Hirata, K., Hijikata, Y., Ito, M., Masuda, H. CO2 reduction promoted by imidazole supported on a phosphonium-type ionic-liquid-modified Au electrode at a low overpotential. ACS Catal. 2018, 8, 1990–2000; https://doi.org/10.1021/acscatal.7b03274.Search in Google Scholar
27. Zhong, S., Yang, X., Cao, Z., Dong, X., Kozlov, S. M., Falivene, L., Huang, J. K., Zhou, X., Hedhili, M. N., Lai, Z., Huang, K. W. Efficient electrochemical transformation of CO2 to C2/C3 chemicals on benzimidazole-functionalized copper surfaces. Chem. Comm. 2018, 54, 11324–11327; https://doi.org/10.1039/c8cc04735a.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0213).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Comparative study of conventional and microwave heating of polyacrylonitrile-based fibres
- Effects of Ru catalyst changes by atmospheric exposure days on the interfacial and impact properties of glass fiber/p-DCPD composites
- Rubber-to-steel adhesives based on natural rubber grafted with poly(acetoacetoxyethyl methacrylate)
- Preparation and assembly
- Preparation and swelling behavior of end-linked hydrogels prepared from linear poly(ethylene glycol) and dendrimer-star polymers
- Imidazolium functionalized polymers for effective electrochemical reduction of CO2
- Morphology optimization of poly(ethylene terephthalate)/polyamide blends compatibilized via extension-dominated twin-screw extrusion
- Engineering and processing
- Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres
- Effect of fiber content on the layer structure formation of fibers inside injection-molded products using short glass fiber-reinforced materials
Articles in the same Issue
- Frontmatter
- Material properties
- Comparative study of conventional and microwave heating of polyacrylonitrile-based fibres
- Effects of Ru catalyst changes by atmospheric exposure days on the interfacial and impact properties of glass fiber/p-DCPD composites
- Rubber-to-steel adhesives based on natural rubber grafted with poly(acetoacetoxyethyl methacrylate)
- Preparation and assembly
- Preparation and swelling behavior of end-linked hydrogels prepared from linear poly(ethylene glycol) and dendrimer-star polymers
- Imidazolium functionalized polymers for effective electrochemical reduction of CO2
- Morphology optimization of poly(ethylene terephthalate)/polyamide blends compatibilized via extension-dominated twin-screw extrusion
- Engineering and processing
- Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres
- Effect of fiber content on the layer structure formation of fibers inside injection-molded products using short glass fiber-reinforced materials