Abstract
In this study, two different surface-modified silica nanoparticles, amino-functionalized nanosilica (ATS) and methyl-functionalized nanosilica (HDS), were separately used as nanofillers to fabricate PA66-based nanocomposites by melt blending. The morphology and interface characteristics of the two nanofillers in the composite system and their influence on the mechanical properties, thermal decomposition behavior, and crystallization behavior of PA66 were investigated. The Avrami and Mo methods were applied to study the non-isothermal crystallization kinetics of the nanocomposites. The results revealed that different surface modifications of silica nanoparticles can produce different influences on the mechanical properties and thermal decomposition behavior of the final nanocomposites. The addition of ATS helps increase the strength and stiffness of PA66/ATS nanocomposites, and in the meantime enhances the thermal stability of PA66. The case of HDS is opposite to that of ATS; however, its incorporation can improve the toughness of the material. In addition, the results also indicate that ATS possesses strong heterogeneous nucleation capability, the introduction of which can accelerate the crystallization rate and increase the crystallization temperature, as well as the degree of crystallinity of PA66, while HDS displays an obvious blocking effect on the crystallization process of PA66.
References
[1] Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR. J. Ind. Eng. Chem. 2015, 21, 11–25.10.1016/j.jiec.2014.03.022Suche in Google Scholar
[2] Rhim J-W, Park H-M, Ha C-S. Prog. Polym. Sci. 2013, 38, 10–11.10.1016/j.progpolymsci.2013.05.008Suche in Google Scholar
[3] Alateyah AI, Dhakal HN, Zhang ZY. Adv. Polym. Tech. 2013, 32, 4.10.1002/adv.21368Suche in Google Scholar
[4] Paul DR, Robeson LM. Polymer 2008, 49, 3187–3204.10.1016/j.polymer.2008.04.017Suche in Google Scholar
[5] Cai D, Jin J, Yusoh K, Rafiq R, Song M. Compos. Sci. Technol. 2012, 72, 471–480.10.1016/j.compscitech.2012.01.020Suche in Google Scholar
[6] Yu J, Jiang P, Wu C, Wang L, Wu X. Polym. Compos. 2011, 32, 10.10.1002/pc.21106Suche in Google Scholar
[7] Naffakh M, Diez-Pascual AM, Gómez-Fatou MA. J. Mater. Chem. 2011, 21, 7423–7433.10.1039/c0jm04471gSuche in Google Scholar
[8] Pan H, Qiu Z. Macromolecules 2010, 43, 1499–1506.10.1021/ma9023685Suche in Google Scholar
[9] Sisakht Mohsen R, Saied NK, Ali Z, Hosein EM, Hasan P. Polym. Compos. 2009, 30, 3.10.1002/pc.20602Suche in Google Scholar
[10] Dusunceli N, Colak OU. Int. J. Plast. 2008, 24, 1224–1242.10.1016/j.ijplas.2007.09.003Suche in Google Scholar
[11] Liu Y, Cui L, Guan F, Gao Y, Hedin NE, Zhu L, Fong H. Macromolecules 2007, 40, 6283–6290.10.1021/ma070039pSuche in Google Scholar
[12] Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I. Mater. Sci. Eng. A 2005, 393, 1–11.10.1016/j.msea.2004.09.044Suche in Google Scholar
[13] Lu Y, Zhang Y, Zhang G, Yang M, Yan S, Shen D. Polymer 2004, 45, 8999–9009.10.1016/j.polymer.2004.10.025Suche in Google Scholar
[14] Chonkaew W, Sombatsompop N, Brostow W. Eur. Polym. J. 2013, 49, 1461–1470.10.1016/j.eurpolymj.2013.03.022Suche in Google Scholar
[15] Han B, Ji G, Wu S, Shen J. Eur. Polym. J. 2003, 39, 1641–1646.10.1016/S0014-3057(03)00075-2Suche in Google Scholar
[16] Kim M, Mun SC, Lee CS, Lee MH, Son Y, Park OO. Carbon 2011, 49, 4024–4034.10.1016/j.carbon.2011.05.044Suche in Google Scholar
[17] Dasari A, Yu Z-Z, Yang M, Zhang Q-X, Xie X-L, Mai Y-W. Compos. Sci. Technol. 2016, 66, 3097–3114.10.1016/j.compscitech.2005.03.020Suche in Google Scholar
[18] Randolph S, Fowlkes J, Rack P. J. Appl. Phys. 2005, 97, 55–89.10.1080/10408430600930438Suche in Google Scholar
[19] Santos WND, Gregorio R. J. Appl. Polym. Sci. 2002, 85, 1779–1786.10.1002/app.10681Suche in Google Scholar
[20] Naik AD, Fontaine G, Samyn F, Delva X, Bourgeois Y, Bourbigot S. Polym. Degrad. Stab. 2013, 98, 2653–2662.10.1016/j.polymdegradstab.2013.09.029Suche in Google Scholar
[21] Lu X, Qiao X, Yang T, Sun K, Chen X. J. Appl. Polym. Sci. 2011, 122, 3.10.1002/app.34035Suche in Google Scholar
[22] Vasanthan N, Murthy NS, Bray RG. Macromolecules 1998, 31, 8433–8435.10.1021/ma980935oSuche in Google Scholar
[23] Wang H-L, Shi T-J, Yang S-Z, Zhai L-F, Hang G-P. J. Appl. Polym. Sci. 2006, 101, 810–817.10.1002/app.22228Suche in Google Scholar
[24] Lincoln DM, Vaia RA, Wang Z-G, Hsiao BS, Krishnamoorti R. Polymer 2001, 42, 09975–09985.10.1016/S0032-3861(01)00542-0Suche in Google Scholar
[25] Liu X, Wu Q, Berglund LA. Polymer 2002, 43, 4967–4972.10.1016/S0032-3861(02)00331-2Suche in Google Scholar
[26] Zhang X, Li Y-B, Zuo Y, Lv G-Y, Mu Y-H, Li H. Compos. Pt. A Appl. Sci. Manuf. 2007, 38, 843–848.10.1016/j.compositesa.2006.08.002Suche in Google Scholar
[27] Friedrich K. Crazing in Polymers, Springer: Berlin, 1983, pp. 225–274.10.1007/BFb0024059Suche in Google Scholar
[28] Ouederni M, Phillips PJ. J. Polym. Sci. Pt B Polym. Phys. 1995, 33, 1313–1322.10.1002/polb.1995.090330901Suche in Google Scholar
[29] Yu H-Y, Qin Z, Yan C-F, Yao J. ACS Sustain. Chem. Eng. 2014, 2, 875–886.10.1021/sc400499gSuche in Google Scholar
[30] Hu J, Jia X, Li C, Ma Z, Zhang G, Sheng W, Zhang X, Wei Z. J. Mater. Sci. 2014, 49, 7.10.1007/s10853-013-8006-1Suche in Google Scholar
[31] Tanniru M, Yuan Q, Misra RDK. Polymer 2006, 47, 2133–2146.10.1016/j.polymer.2006.01.063Suche in Google Scholar
[32] Rong MZ, Zhang MQ, Pan SL, Friedrich K. J. Appl. Polym. Sci. 2004, 92, 176–183.10.1002/pi.1307Suche in Google Scholar
[33] Avrami M. J. Chem. Phys. 1941, 9, 177–184.10.1063/1.1750872Suche in Google Scholar
[34] Ozawa T. Polymer 1971, 12, 150–158.10.1016/0032-3861(71)90041-3Suche in Google Scholar
[35] Liu T, Mo Z, Wang S, Zhang H. Polym. Eng. Sci. 1997, 37, 568–575.10.1002/pen.11700Suche in Google Scholar
[36] Jeziorny A. Polymer 1978, 19, 1142–1144.10.1016/0032-3861(78)90060-5Suche in Google Scholar
[37] Kuo MC, Huang JC, Chen M. Mater. Chem. Phys. 2006, 99, 258–268.10.1016/j.matchemphys.2005.10.021Suche in Google Scholar
[38] Hu X, Lesser AJ. Polymer 2007, 45, 2333–2340.10.1016/j.polymer.2003.12.079Suche in Google Scholar
[39] Dobreva A, Gutzow I. J. Non-Cryst. Solids 1993, 162, 13–25.10.1016/0022-3093(93)90737-ISuche in Google Scholar
[40] Wunderlich B. Crystal Nucleation, Growth, Annealing, Academic Press: New York, 1976, vol. 3.Suche in Google Scholar
[41] Kissinger HE. Anal. Chem. 1957, 29, 1702–1706.10.1021/ac60131a045Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original articles
- Effect of the variation of the gating system on the magnetic properties of injection molded pole-oriented rings
- Effect of graphite and silicon carbide fillers on mechanical properties of PA6 polymer composites
- Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites
- Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samarium acetylacetonate as a transesterification catalyst
- Understanding the interactive effects of material parameters governing the printer toner properties: a response surface study
- Quest for electroconducting structural polymers: CNTs/Polybond nanocomposites with improved electrical and mechanical properties
- Comb-like copolymer dispersant for PP/CaCO3 composites: effects of particle concentration on properties of composites
- Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte
- Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater
Artikel in diesem Heft
- Frontmatter
- Original articles
- Effect of the variation of the gating system on the magnetic properties of injection molded pole-oriented rings
- Effect of graphite and silicon carbide fillers on mechanical properties of PA6 polymer composites
- Mechanical properties, thermal and crystallization behavior of different surface-modified silica nanoparticle-filled PA66 composites
- Thermal characterization of reactive blending of 70PC/30PET mixtures prepared in the presence/absence of samarium acetylacetonate as a transesterification catalyst
- Understanding the interactive effects of material parameters governing the printer toner properties: a response surface study
- Quest for electroconducting structural polymers: CNTs/Polybond nanocomposites with improved electrical and mechanical properties
- Comb-like copolymer dispersant for PP/CaCO3 composites: effects of particle concentration on properties of composites
- Study of PVAc-PMMA-LiCl polymer blend electrolyte and the effect of plasticizer ethylene carbonate and nanofiller titania on PVAc-PMMA-LiCl polymer blend electrolyte
- Mechanical performances of hygrothermally conditioned CNT/epoxy composites using seawater