Startseite Bulk cure study of nanoclay filled epoxy glass fiber reinforced composite material
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Bulk cure study of nanoclay filled epoxy glass fiber reinforced composite material

  • John Olusanya , Krishnan Kanny EMAIL logo und Shalini Singh
Veröffentlicht/Copyright: 13. Juli 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The correlation between cure properties and structure of nanoclay filled composite laminate has not been studied extensively. Most of the cure studies were preferably done using small samples through a calorimetric method. In this study, the effect of varying weight ratio of nanoclay (1–5 wt%) on bulk cure properties of epoxy glass fiber reinforced composite (GFRC) laminates was studied. Bulk cure of unfilled and clay filled GFRC laminates was determined using the dynamic mechanical analysis-reheat method (DMA-RM). DMA-RM cure properties gave a better coordinate method, with better cure efficiency achieved in clay filled GFRC laminates when compared to unfilled GFRC laminates. The correlation between nanoclay and DMA-RM degree of cure was coordinated with compressive and in-plane shear strength properties. The degree of cure value of 78% by DMA-RM at 1 wt% clay filled GFRC corresponds with the compressive modulus and in-plane shear strength highest values, which are 20% and 14% increase, respectively, also at 1 wt% clay filled GFRC. The structures of the unfilled and clay filled epoxy were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Clay filled epoxy up to 3 wt% showed no distinct diffraction peak, which suggested that nanoclay is randomly dispersed in the matrix.

Acknowledgments

This research project is achieved as a result of an Indian-South African project. The authors wish to gratefully acknowledge the financial support provided by the National Research Foundation of South Africa (Grant no. 76460) under DST India-NRF South Africa bilateral research agreements. We also acknowledge the research and postgraduate support of Durban University Technology for postgraduate scholarship award to JS.

References

[1] Dean D, Walker R, Theodore M, Hampton E, Nyairo E. Polymer 2005, 46, 3014–3021.10.1016/j.polymer.2005.02.015Suche in Google Scholar

[2] Jiankun L, Yucai K, Zongneng Q, Xiao-Su YJ. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 115–120.10.1002/1099-0488(20010101)39:1<115::AID-POLB100>3.0.CO;2-NSuche in Google Scholar

[3] TA Instrument. Determination of Composite Cure. www.tainstruments.com/library_download.aspx?file=TS11.pdf. Accessed 18 Aug 2014.Suche in Google Scholar

[4] Kim HG, Lee DG. Compos. Struct. 2002, 57, 91–99.10.1016/S0263-8223(02)00072-7Suche in Google Scholar

[5] Ivankovic M, Brnardic I, Ivankovic H, Mencer HJ. J. Appl. Polym. Sci. 2006, 99, 550–557.10.1002/app.22488Suche in Google Scholar

[6] Cai H, Li P, Sui G, Yu Y, Li G, Yang X, Ryu S. Thermochim. Acta 2008, 473, 101–105.10.1016/j.tca.2008.04.012Suche in Google Scholar

[7] Pandiyan RR, Chakraborty S, Kundu G, Neogi S. J. Appl. Polym. Sci. 2009, 114, 2415–2420.10.1002/app.30720Suche in Google Scholar

[8] Zhao J, Morgan AB, Harris JD. Polymer 2005, 46, 8641–8660.10.1016/j.polymer.2005.04.038Suche in Google Scholar

[9] Litchfield DW, Baird DG. Rheol. Rev. 2006, 1–60.Suche in Google Scholar

[10] Haider M, Hubert P, Lessard L. Composites, Part A 2007, 38, 994–1009.10.1016/j.compositesa.2006.06.020Suche in Google Scholar

[11] Khoun L, Hubert P. Polym. Compos. 2010, 31, 1603–1610.10.1002/pc.20949Suche in Google Scholar

[12] Hardis R, Jessop JLP, Peters FE, Kessler MR. Composites, Part A 2013, 49, 100–108.10.1016/j.compositesa.2013.01.021Suche in Google Scholar

[13] Escola MA, Moina CA, G’omez ACN, Ybarra GO. Polym. Test. 2005, 24, 572–575.10.1016/j.polymertesting.2005.02.013Suche in Google Scholar

[14] Ruiz E, Trochu F. J. Compos. Mater. 2005, 39, 881–916.10.1177/0021998305048732Suche in Google Scholar

[15] Yu H, Mhaisalkar SG, Wong EH. J. Electron. Mater. 2005, 34, 1177–1182.10.1007/s11664-005-0248-5Suche in Google Scholar

[16] Schoch KF, Panackal PA, Frank PP. Thermochim. Acta 2004, 417, 115–118.10.1016/j.tca.2003.12.027Suche in Google Scholar

[17] Shiravand F, Hutchinson JM, Calventus Y, Ferrando F. Materials 2014, 7, 4196–4223.10.3390/ma7064196Suche in Google Scholar PubMed PubMed Central

[18] Hussain F, Hojjati M, Okamoto M, Gorga R. J. Compos. Mater. 2006, 40, 1511–1572.10.1177/0021998306067321Suche in Google Scholar

[19] Ivankovic M, Brnardic I, Ivankovic H, Mencer HJ. J. Appl. Polym. Sci. 2006, 99, 550–557.10.1002/app.22488Suche in Google Scholar

[20] Kanny K, Mohan TP. Compos Part B 2014, 58, 328–334.10.1016/j.compositesb.2013.10.025Suche in Google Scholar

[21] Chen W-Y, Wang Y-Z, Chang F-C. J. Appl. Polym. Sci. 2004, 92, 892–900.10.1002/app.20054Suche in Google Scholar

[22] Wilson TW, Fornes RE, Gilbert RD, Memory JD. In Cross-Linked Polymers, Dickie RA, Labana SS, Bauer RS, Eds., American Chemical Society: Washington, DC, 1988, Chapter 7.Suche in Google Scholar

[23] Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), ASTM D7028 – 07e1, 10.1520/D7028-07E0.Suche in Google Scholar

[24] Messersmith PB, Giannelis EP. Chem. Mater. 1994, 6, 1719–1725.10.1021/cm00046a026Suche in Google Scholar

[25] Chen J-S, Poliks MD, Ober CK, Zhang Y, Wiesner U, Giannelis E. Polymer 2002, 43, 4895–4904.10.1016/S0032-3861(02)00318-XSuche in Google Scholar

[26] Mulligan DR, Gnaniah SJP, Sims GD. Thermal Analysis Techniques for Composites and Adhesives. NPL Measurement Good Practice Guide No 32, 2000.Suche in Google Scholar

[27] Feng W, Ait-Kadi A, Riedl B. Polym. Eng. Sci. 2002, 42, 1827–1836.10.1002/pen.11075Suche in Google Scholar

[28] Pham JQ, Mitchell CA, Bahr JL, Tour JM, Krishanamoorti R, Green PF. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 3339–3345.10.1002/polb.10702Suche in Google Scholar

[29] Ash BJ, Schadler LS, Siegel RW. Mater. Lett. 2002, 55, 83–87.10.1016/S0167-577X(01)00626-7Suche in Google Scholar

[30] Becker O, Varley R, Simon G. Polymer 2002, 43, 4365–4373.10.1016/S0032-3861(02)00269-0Suche in Google Scholar

[31] Kornmann X, Lindberg H, Berglund LA. Polymer 2001, 42, 4493–4499.10.1016/S0032-3861(00)00801-6Suche in Google Scholar

[32] Nigam V, Setua DK, Mathur GN, Kar KK. J. Appl. Polym. Sci. 2004, 93, 2201–2210.10.1002/app.20736Suche in Google Scholar

[33] Liu T, Tjiu WC, Tong Y, He C, Goh SS, Chung T-S. J. Appl. Polym. Sci. 2004, 94, 1236–1244.10.1002/app.21033Suche in Google Scholar

[34] Bilyeu B, Brostow W, Menard KP. J. Mater. Educ. 2000, 22, 107–129.Suche in Google Scholar

[35] AdhensivesToolKit, Thermal Analysis and Cure Monitoring, http://www.adhesivestoolkit.com/Docs/test/THERMAL%20ANALYSIS%20AND%20CURE%20MONITORING.xtp.Suche in Google Scholar

[36] Jumahat A, Soutis C, Mahmud J, Ahmad N. Procedia Eng. 2012, 41, 1607–1613.10.1016/j.proeng.2012.07.357Suche in Google Scholar

[37] Kamiya R, Chou T-W. Metall. Trans. A 2000, 31A, 899.10.1007/s11661-000-1009-ySuche in Google Scholar

[38] Jawahar P, Gnanamoorthy R, Balasubramanian M. Wear 2006, 261, 835–840.10.1016/j.wear.2006.01.010Suche in Google Scholar

Received: 2015-3-4
Accepted: 2016-5-21
Published Online: 2016-7-13
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0086/html
Button zum nach oben scrollen