Startseite A new approach for the development of textile waste cotton reinforced composites (T-FRP): laminated hybridization vs. coupling agents
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A new approach for the development of textile waste cotton reinforced composites (T-FRP): laminated hybridization vs. coupling agents

  • Mehmet Safa Bodur EMAIL logo , Mustafa Bakkal , Mehmet Savas und Omer Berk Berkalp
Veröffentlicht/Copyright: 20. Mai 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents two separate methods to improve the tensile strength (TS) of textile waste cotton reinforced polymer composites (T-FRP) as prospective functional materials with respect to environmental concerns. Two very different methods were designed in order to improve the TS of the composite. In the first method, maleated anhydride polyethylene was added as the coupling agent into the composite composition, whereas in the second method, a totally new glass fiber and glass fabric laminated hybrid composite structure was designed. In this first study, the coupling agent was mixed up to 5 wt% into the composite structure in order to improve the bonding interface between low density polyethylene (LDPE) matrix and cotton waste fibers. The effect of the coupling agent was evaluated and compared with the unmodified one. By contrast, chopped glass (CG) fibers and woven biaxial glass fabrics were introduced into the composite layers with the intention of designing a new hybrid composite structure as a second study. The TS of the materials was evaluated and the fracture surface was assessed with an optical microscope. Consequently, an improvement in TS of 50% and 230% was achieved by the addition of the coupling agent and the creation of a new hybrid composite, respectively.


Corresponding author: Mehmet Safa Bodur, Department of Mechanical Engineering, Istanbul Technical University, 34104 Istanbul, Turkey, e-mail:

References

[1] Wittig W. Kunststoffe im Automobilbau, Düsseldorf: VDI-Verlag, 1994.Suche in Google Scholar

[2] Karmarkar A, Chauhan SS, Modak JM, Chanda M. Composites, Part A 2007, 38, 227–233.10.1016/j.compositesa.2006.05.005Suche in Google Scholar

[3] Sam-Jung K, Jin-Bok M, Gue-Hyun K, Chang-Sik H. Polym. Test 2008, 27, 801–806.Suche in Google Scholar

[4] Zhang X, Zhang W, Tian D, Zhou Z, Lu C. RSC Adv. 2013, 3, 7722–7725.Suche in Google Scholar

[5] Sun X, Lu C, Zhang W, Tian D, Zhang X. Carbohydr. Polym. 2013, 98, 405–411.Suche in Google Scholar

[6] Sun X, Lu C, Liu Y, Zhang W, Zhang X. Carbohydr. Polym. 2014, 101, 642–649.Suche in Google Scholar

[7] Faruk O, Bledzki AK, Fink HP, Sain M. Prog. Polym. Sci. 2012, 37, 1552–1596.Suche in Google Scholar

[8] Lu john Z, Qinglin W, Negulescu II. J. Appl. Polym. Sci. 2005, 96, 93–102.Suche in Google Scholar

[9] Pracella M, Chionna D, Anguillesi I, Kulinski Z, Piorkowska E. Compos. Sci. Technol. 2006, 66, 2218–2230.Suche in Google Scholar

[10] Samal SK, Mohanty S, Nayak SK. Polym.-Plast. Technol. Eng. 2009, 48, 397–414.Suche in Google Scholar

[11] Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS. Compos. Struct. 2007, 77, 45–55.Suche in Google Scholar

[12] Zhang X, Yang H, Lin Z, Tan S. J. Thermoplast. Compos. Mater. 2013, 26, 16–29.Suche in Google Scholar

[13] Kord B, Hosseni K, Syed M. Bio. Resour. 2011, 6, 1741–1751.Suche in Google Scholar

[14] Lin Q, Zhou X, Dai G, Bi Y. J. Appl. Polym. Sci. 2002, 85, 536–544.Suche in Google Scholar

[15] Jiang H, Pascal KD, Bezubic B, Paul R. J. Vinyl Add. Tech. 2003, 9, 138–145.Suche in Google Scholar

[16] Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninckx G. Polym. Int. 2004, 53, 1624–1638.Suche in Google Scholar

[17] Paiva J, De Carvalho CZ, Fonseca LH, Monteiro VM, D’Almeida SN. Polym. Test. 2004, 23, 131–135.Suche in Google Scholar

[18] Vieira C, Susin SBS, Freire E, Amico SC, Zattera AJ. Mater. Res. 2009, 12, 433–436.Suche in Google Scholar

[19] Jarukumjorn K, Suppakarn N. Composites, Part B 2009, 40, 623–627.10.1016/j.compositesb.2009.04.007Suche in Google Scholar

[20] Mishra S, Mohanty AK, Drzal LT, Misra M, Parija S, Nayak SK, Tripathy SS. Compos. Sci. Technol. 2003, 63, 1377–1385.Suche in Google Scholar

[21] Idicula M, Neelakantan NR, Oommen Z, Joseph K, Thomas S. J. Appl. Polym. Sci. 2005, 96, 1699–1709.Suche in Google Scholar

[22] Rozman HD, Tay GS, Kumar RN, Abusamah A, Ismail H. Eur. Polym. J. 2001, 37, 1283–1291.Suche in Google Scholar

[23] Bakkal M, Bodur MS, Berkalp OB, Yilmaz S. J. Mater. Process. Technol. 2012, 212, 2541–2548.Suche in Google Scholar

[24] Beg MDH, Pickering KL. Composites, Part A 2008, 39, 1748–1755.10.1016/j.compositesa.2008.08.003Suche in Google Scholar

[25] Ganster J, Fink HP, Pinnow M. Composites, Part A 2006, 37, 1796–1804.10.1016/j.compositesa.2005.09.005Suche in Google Scholar

[26] Wielage B, Lampke T, Utschick H, Soergel F. J. Mater. Process. Technol. 2003, 139, 140–146.Suche in Google Scholar

[27] Majid RA, Ismail H, Taib RM. Iran. Polym. J. 2010, 19, 501–510.Suche in Google Scholar

[28] Youssef H, Waleed K. El-Zawawy, Maha MI, Alain D. Compos. Sci. Technol. 2008, 68, 1877–1885.Suche in Google Scholar

[29] Wambua P, Ivens J, Verpoest I. Compos. Sci. Technol. 2003, 63, 1259–1264.Suche in Google Scholar

[30] Ahmad I, Baharum A, Abdullah I. J. Reinf. Plast. Compos. 2006, 25, 957–65.Suche in Google Scholar

[31] Kartalis CN, Papasprides CD, Pfaendner R. Polym. Degrad. Stab. 2000, 70, 189–197.Suche in Google Scholar

Received: 2013-10-31
Accepted: 2014-4-22
Published Online: 2014-5-20
Published in Print: 2014-9-1

©2014 by De Gruyter

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0281/html
Button zum nach oben scrollen