Startseite Electrospun cellulosic structure nanofibre based on rice straw
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrospun cellulosic structure nanofibre based on rice straw

  • Vahid Mottaghitalab EMAIL logo und Mona Farjad
Veröffentlicht/Copyright: 23. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The present investigation compares the diverse methods of cellulose extraction from rice straw. Furthermore, the purified cellulosic material was utilized for the electrospinning of cellulose nanofibers. Based on the differential scanning calorimeter and Fourier transform infrared spectroscopy analyses, the new protocol was compared to the other methods showing lower amorphous structure and also lower lignin and hemicellulose in crystalline α-cellulose structure. The protocol, which included ultrasonic mechanical treatment, showed a higher crystallinity of the corresponding cellulose giving microfibers of 2.9±0.2 μm in average diameter based on the scanning electron microscope images. Cellulose nanofiber was prepared from its solution in trifluoroacetic acid using general one-step electrospinning process. The simultaneous effects of four processing variables including solution concentration (C), applied voltage (V), spinning distance (d), and volume flow rate (Q) on mean fiber diameter (MFD) and standard deviation of fiber diameter (StdFD) were investigated quantitatively and qualitatively. A range of MFD between 96±26 nm and 292±35 nm was recorded for further analysis. The response surface methodology was employed to establish quadratic models for MFD and StdFD. was found to be 96.18% and 91.25%, respectively, for the MFD and StdFD models, showing the good prediction ability of the models. The response surface plots showed strong relationship among variables.


Corresponding author: Vahid Mottaghitalab, Faculty of Engineering, Textile Engineering Department, University of Guilan, P. O. Box 3756, Rasht, Iran, e-mail:

Authors acknowledge the financial support from Iran National Science Foundation (INSF) with grant number 90001477. The authors are also grateful to the University of Guilan and the Guilan Science and Technology Park (GSTP).

References

[1] Abdul Khalil HPS, Bhat AH, Ireana YAF. Carbohydr. Polym. 2012, 87, 963–979.Suche in Google Scholar

[2] Abe K, Yano H. Cellulose 2009, 16, 1017–1023.10.1007/s10570-009-9334-9Suche in Google Scholar

[3] Alemdar A, Sain M. Bioresour. Technol. 2008, 99, 1664–1671.Suche in Google Scholar

[4] Alila S, Besbes I, Vilar MR, Mutjé P, Boufi, S. Ind. Crops Prod. 2013, 41, 250–259.Suche in Google Scholar

[5] La Mantia FP, Morreale M. Composites Part A 2011, 42, 579–588.10.1016/j.compositesa.2011.01.017Suche in Google Scholar

[6] Alemdar A, Sain M. Compos. Sci. Technol. 2008, 68, 557–565.Suche in Google Scholar

[7] Azeredo HMC, Miranda KWE, Rosa MF, Nascimento DM, de Moura MR. Food Sci. Technol. 2012, 46, 294–297.Suche in Google Scholar

[8] Besbes I, Vilar MR, Boufi S. Carbohydr. Polym. 2011, 86, 1198–1206.Suche in Google Scholar

[9] Johar N, Ahmad I, Dufresne A. Ind. Crops Prod. 2012, 37, 93–99.Suche in Google Scholar

[10] Chen XL, Hu SC, Zhou ZW. J. Funct. Mater. 2010, 41, 275–277.Suche in Google Scholar

[11] Chen W, Yu H, Liu Y. Carbohydr. Polym. 2011, 86, 453–461.Suche in Google Scholar

[12] Abdel-Mohdy FA, Abdel-Halim ES, Abu-Ayana YM, El-Sawy SM. Carbohydr. Polym. 2009, 75, 44–51.Suche in Google Scholar

[13] Niu K, Chen P, Zhang X, Tan WS. J. Chem. Technol. Biotech. 2009, 84, 1240–1245.Suche in Google Scholar

[14] Xiao B, Sun XF, Sun RC. Polym. Degrad. Stab. 2001, 74, 307–319.Suche in Google Scholar

[15] Sangnark A, Noomhorm A. Food Res. Int. 2004, 37, 66–74.Suche in Google Scholar

[16] Sun JX, Xu F, Geng ZC, Sun XF, Sun RC. J. Appl. Polym. Sci. 2005, 97, 322–325.Suche in Google Scholar

[17] Chen X, Yu J, Lu C. Carbohydr. Polym. 2011, 85, 245–250.Suche in Google Scholar

[18] Lu P, Hsieh YL. Carbohydr. Polym. 2010, 82, 329–336.Suche in Google Scholar

[19] Lu P, Hsieh YL. Carbohydr. Polym. 2012, 87, 564–573.Suche in Google Scholar

[20] Ahn Y, Hu DH, Hong JH, Lee SH, Kim HJ, Kim H. Carbohydr. Polym. 2012, 89, 340–345.Suche in Google Scholar

[21] Ahn Y, Lee SH, Kim HJ, Yang YH, Hong JH, Kim YH, Kim H. Carbohydr. Polym. 2012, 88, 395–398.Suche in Google Scholar

[22] Ma Z, Kotaki M, Ramakrishna S. J. Membr. Sci. 2005, 265, 115–123.Suche in Google Scholar

[23] Ohkawa K, Hayashi S, Nishida A, Yamamoto H. Text. Res. J. 2009, 79, 1396–1405.Suche in Google Scholar

[24] Klemm D, Heublein B, Fink HP, Bohn A. Angew. Chem. Int. Ed. 2005, 44, 3358–3393.Suche in Google Scholar

[25] Awal A, Sain M, Chowdhury M. Composites Part B 2011, 42, 1220–1225.10.1016/j.compositesb.2011.02.011Suche in Google Scholar

[26] Kaushik A, Singh M, Verma G. Carbohydr. Polym. 2010, 82, 337–345.Suche in Google Scholar

[27] Fung WY, Yuen KH, Liong MT. J. Agric. Food Chem. 2010, 58, 8077–8084.Suche in Google Scholar

[28] Mahdieh ZM, Mottaghitalab V, Piri N, Haghi AK. Korean J. Chem. Eng. 2012, 29, 111–119.Suche in Google Scholar

[29] Moridi ZM, Mottaghitalab V, Haghi AK. Cellul. Chem. Technol. 2011, 45, 549–563.Suche in Google Scholar

[30] Mottaghitalab F, Farokhi M, Mottaghitalab V, Ziabari M, Divsalar A, Shokrgozar, MA. Carbohydr. Polym. 2011, 86, 526–535.Suche in Google Scholar

[31] Ziabari M, Mottaghitalab V, Haghi AK. Korean J. Chem. Eng. 2008, 25, 905–918.Suche in Google Scholar

[32] Ziabari M, Mottaghitalab V, Haghi AK. Korean J. Chem. Eng. 2008, 25, 923–932.Suche in Google Scholar

[33] Abuzade R, Zadhoush, A, Gharehaghaji AA. J. Appl. Polym. Sci. 2012, 126, 232–243.Suche in Google Scholar

[34] Aluigi A, Tonetti C, Vineis C, Varesano A, Tonin C, Casasola R. J. Nanosci. Nanotech. 2012, 12, 7250–7259.Suche in Google Scholar

[35] Andric T, Wright LD, Taylor BL, Freeman JW. J. Biomed. Mater. Res. Part A 2012, 100A, 2097–2105.10.1002/jbm.a.34045Suche in Google Scholar

[36] Sadrjahani M, Hoseini SA, Mottaghitalab V, Haghi AK. e-Polymers 2011, 17.Suche in Google Scholar

[37] Ziabari M, Mottaghitalab V, Haghi AK. Korean J. Chem. Eng. 2010, 27, 340–354.Suche in Google Scholar

[38] Kim CW, Kim DS, Kang SY, Marquez M, Joo YL. Polymer 2006, 47, 5097–5107.10.1016/j.polymer.2006.05.033Suche in Google Scholar

[39] Kulpinski P. J. Appl. Polym. Sci. 2005, 98, 1855–1859.Suche in Google Scholar

[40] Khil MS, Kim HY, Kang Y S, Bang HJ, Lee DR. Macromol. Res. 2005, 13, 62–67.Suche in Google Scholar

[41] Montano-Leyva B, Rodriguez-Felix F, Torres-Chávez P, Ramirez-Wong B, López-Cervantes J, Sanchez-Machado DJ. Agric. Food Chem. 2011, 59, 870–875.Suche in Google Scholar

[42] Kim CW, Frey MW, Marquez M, Joo YL. J. Polym. Sci. 2005, 43, 1673–1683.Suche in Google Scholar

[43] Frey MW. Polym. Rev. 2008, 48, 378–391.Suche in Google Scholar

[44] Pana M, Zhoua D, Zhoua X, Lianc Z. Bioresour. Technol. 2010, 101, 7930–7934.Suche in Google Scholar

[45] Liying L, Hongzhang C. Chin. Sci. Bull. 2006, 51, 2432–2436.Suche in Google Scholar

[46] Carrillo F, Colom X, Sũnol JJ, Saurina J. Euro. Polym. J. 2004, 40, 2229–2234.Suche in Google Scholar

[47] Pinjari DV, Pandit AB. Ultrason. Sonochem. 2010, 17, 845–852.Suche in Google Scholar

[48] Quiévy N, Jacquet N, Sclavons M, Deroanne C, Paquot M, Devaux J. Polym. Degrad. Stab. 2010, 95, 306–314.Suche in Google Scholar

[49] Nguyen T, Zavarin E, Barrall EM. Polym. Rev. 1981, 20, 1–65.Suche in Google Scholar

[50] Diotallevi F, Mulder B. Biophys. J. 2007, 92, 2666–2673.Suche in Google Scholar

[51] Herrick FW, Casebier RL, Hamilton JK, Sandberg KR. J. Appl. Polym. Sci. 1983, 37, 797–813.Suche in Google Scholar

[52] Turbak AF, Snyder FW, Sandberg KR. J. Appl. Polym. Sci. 1983, 37, 815–827.Suche in Google Scholar

[53] Azizi Samir MAS, Alloin F, Paillet M, Dufresne A. Macromolecules 2004, 37, 4313–4316.10.1021/ma035939uSuche in Google Scholar

[54] Reneker DH, Yarin AL, Fong H, Koombhongse SJ. Appl. Phys. 2000, 87, 4531–4547.Suche in Google Scholar

[55] Kim SJ, Lee CK, Kim SI. J. Appl. Polym. Sci. 2005, 96, 1388–1393.Suche in Google Scholar

[56] Fong H, Chun I, Reneker DH. Polymer 1999, 40, 4585–4592.10.1016/S0032-3861(99)00068-3Suche in Google Scholar

[57] Zarkoob SH, Eby RK, Reneker DH, Hudson SD, Ertley D, Adams W. Polymer 2004, 45, 3973–3977.10.1016/j.polymer.2003.10.102Suche in Google Scholar

[58] Taylor GI. Integration of Water Drops in an Electric Field. Proceedings of the Royal Society of London 1964, 280, 1382, 383–397.10.1098/rspa.1964.0151Suche in Google Scholar

[59] Taylor GI, McEwan AD. J. Fluid Mech. 1965, 22, 1–15.Suche in Google Scholar

[60] Taylor GI. The Force Exerted by an Electric Field on a Long Cylindrical Conductor. Proceedings of the Royal Society of London 1966, 291, 1425, 145–158.10.1098/rspa.1966.0085Suche in Google Scholar

[61] Taylor GI. Electrically Driven Jets. Proceedings of the Royal Society of London 1969, 313, 1515, 453–475.10.1098/rspa.1969.0205Suche in Google Scholar

[62] Baumgarten PK. J. Colloid Interface Sci. 1971, 36, 544–583.Suche in Google Scholar

[63] Martin GE, Cockshott ID, Fildes FJD. Fibrillar Lining for Prosthetic Device, U. S. Patent, no. 4,044,404, August 30, 1977.Suche in Google Scholar

[64] Simm W, Gösling C, Bonart R, von Falkai B. Filter Made of Electrostatically Spun Fibers, U. S. Patent, no. 4,069,026, January 17, 1978.Suche in Google Scholar

[65] Simm C, Bonart GR, von Falkai B. Fibre Fleece of Electrostatically Spun Fibres and Methods of Making Same, U. S. Patent, no. 4,143,196, March 6, 1979.Suche in Google Scholar

[66] Formhals A. Production of Artificial Fibers from Fiber Forming Liquids, U. S. Patent, no. 2,323,025, June 29, 1943.Suche in Google Scholar

[67] Formhals A. Method and Apparatus for Spinning, U. S. Patent, no. 2,349,950, May 30, 1944.Suche in Google Scholar

[68] Guingnard C. Process for the Manufacture of a Plurality of Filaments, U. S. Patent, no. 4,230,650, October 28, 1980.Suche in Google Scholar

[69] Larrondo L, John Manley RST. J. Polym. Sci.: Polym. Phys. 1981, 19, 921–932.Suche in Google Scholar

[70] Gladding K. Apparatus for the Production of Filaments, Threads, and the Like, U. S. Patent, no. 2,168,027, August 1, 1939.Suche in Google Scholar

[71] Xu H. Formation and Characterization of Polymer Jets in Electrospinning, PhD dissertation, University of Akron, 2003.Suche in Google Scholar

Received: 2013-4-3
Accepted: 2013-10-9
Published Online: 2013-11-23
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0081/pdf
Button zum nach oben scrollen