Startseite Post-irradiation effects on gamma-irradiated nylon 6,12 fibers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Post-irradiation effects on gamma-irradiated nylon 6,12 fibers

  • Carmina Menchaca-Campos EMAIL logo , Gonzalo Martínez-Barrera , Héctor López-Valdivia , Héctor Carrasco und Alberto Álvarez-Castillo
Veröffentlicht/Copyright: 23. November 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Post-irradiation effects on nylon 6,12 crystalline fibers gamma-irradiated 6 years previously (6YI) were studied, including thermal stability and morphology; their relationship with storage time was also studied. The results of these studies were compared with those obtained for non-irradiated (NI) and namely freshly irradiated (FI) crystalline fibers. The results include analyses like thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscopy (SEM) and optical images for (6YI and FI) both kinds of nylon 6,12 fibers. The results showed that the most prominent effect is related to the reaction progress. The chain scission and/or crosslinking mechanisms, as well as the free radicals, allow proceeding with the reaction, and consequently, changes on the properties of the FI samples. The melting point, degree of crystallinity, degradation temperature and morphology prove that additional chemical reactions and surface modifications keep occurring in the fibers long after the irradiation process has ended. With storage time, the surface becomes rougher, the color turns yellowish, the melting point diminishes and the degree of crystallinity increases.


Corresponding author: Carmina Menchaca-Campos, Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, 62209, Cuernavaca Mor. Mexico, e-mail:

References

[1] Liu CK, Kokish M. Polym. Prepr. 1996, 37, 748–749.Suche in Google Scholar

[2] Brostow W, Deshpande S, Fan K, Mahendrakar S, Pietkiewicz D, Wisner SR. Polym. Eng. Sci. 2009, 49, 1035–1041.Suche in Google Scholar

[3] Menchaca C, Manoun B, Martínez-Barrera G, Castaño VM, López-Valdivia H. J. Phys. Chem. Solids 2006, 67, 2111–2118.10.1016/j.jpcs.2006.05.017Suche in Google Scholar

[4] Martínez-Barrera G, Menchaca C, Pietkiewicz D, Brostow W. Mater. Sci. (Medziagotyra) 2004, 10, 166–172.Suche in Google Scholar

[5] Martínez-Barrera G, Hernández-López S, Vigueras-Santiago E, Menchaca-Campos C, Brostow W. Polym. Eng. Sci. 2005, 45, 1426–1431.Suche in Google Scholar

[6] Martínez-Barrera G, Vigueras-Santiago E, Hernández-López S, Menchaca-Campos C, Brostow W. J. Mater. Res. 2006, 21, 484–491.Suche in Google Scholar

[7] Martínez-Barrera G, Menchaca-Campos C, Vigueras-Santiago E, Brostow W. e-Polym. 2010, 042, 1–14.Suche in Google Scholar

[8] Olivares M, López-Valdivia H, Vázquez-Polo G, Carrasco H, Álvarez-Castillo A, Oliva E, Castaño VM. Polym. Bull. 1996, 36, 629–636.Suche in Google Scholar

[9] Menchaca C, Álvarez-Castillo A, Martínez-Barrera G, López-Valdivia H, Carrasco H, Castaño VM. Int. J. Mater. Prod. Technol. 2003, 19, 521–529.Suche in Google Scholar

[10] Menchaca-Campos C, Martínez-Barrera G, Fainleib A. J. Polym. Eng. 2011, 31, 457–461.Suche in Google Scholar

[11] Menchaca C, Rejón L, Álvarez-Castillo A, Apátiga M, Castaño VM. Int. J. Polym. Mater. 2000, 48, 135–143.Suche in Google Scholar

[12] Menchaca-Campos C, Martínez-Barrera G, Resendiz MC, Lara VH, Brostow W. J. Mater. Res. 2008, 23, 1276–1281.Suche in Google Scholar

[13] Menchaca C, Demesa G, Santiaguillo A, Martínez-Barrera G, López-Valdivia H, Carrasco H, Uruchurtu J. J. Mater. Sci. Eng. B 2012, 2, 247–254.Suche in Google Scholar

[14] Menchaca C, Álvarez-Castillo A, López-Valdivia H, Carrasco H, Lara VH, Bosch P, Castaño VM. Int. J. Polym. Mater. 2002, 51, 769–781.Suche in Google Scholar

[15] Menchaca C, Nava JC, Valdéz S, Sarmiento-Martínez O, Uruchurtu J. J. Mater. Sci. Eng. 2010, 4, 50–58.Suche in Google Scholar

[16] Ungar G. J. Mater. Sci. 1981, 16, 2635–2656.Suche in Google Scholar

[17] Keller A, Ungar G. Radiat. Phys. Chem. 1983, 22, 155–181.Suche in Google Scholar

[18] Li B, Zhang L. Polym. Degrad. Stab. 1997, 55, 17–20.Suche in Google Scholar

[19] Luo Y, Wang G, Lu Y, Chen N, Jiang B. Radiat. Phys. Chem. 1985, 25, 359–365.Suche in Google Scholar

[20] Timus DM, Cincu C, Bradley DA, Craciun G, Mateescu E. Appl. Radiat. Isot. 2000, 53, 937–944.Suche in Google Scholar

[21] Bittner B, Mader K, Kroll C, Borchert HH, Kissel T. J. Controlled Release 1999, 59, 23–32.10.1016/S0168-3659(98)00170-9Suche in Google Scholar

[22] Valenza A, Piccarolo S, Spadaro G. Polymer 1999, 40, 835–841.10.1016/S0032-3861(98)00294-8Suche in Google Scholar

[23] Aytac A, Deniz V, Sen M, Hegazy ES, Guven O. Radiat. Phys. Chem. 2010, 79, 297–300.Suche in Google Scholar

[24] Li B, Yu J, Zhang L, Liang Q. Polym. Int. 1996, 39, 295–302.Suche in Google Scholar

[25] Zhang L, Zhang W, Zhang Z, Yu L, Zang H, Qi Y, Chen D. Radiat. Phys. Chem. 1992, 40, 501–505.Suche in Google Scholar

[26] O’Neill P, Birkinshaw C, Leahy JJ, Barklie R. Polym. Degrad. Stab. 1999, 63, 31–39.Suche in Google Scholar

[27] Malek MA, Renreng A, Chong CS. Radiat. Phys. Chem. 2001, 60, 603–607.Suche in Google Scholar

Received: 2013-3-22
Accepted: 2013-10-5
Published Online: 2013-11-23
Published in Print: 2013-12-01

©2013 by Walter de Gruyter Berlin Boston

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2013-0070/html
Button zum nach oben scrollen