Startseite Naturwissenschaften Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant

  • Olivier Holtomo EMAIL logo , Lydia Rhyman , Mama Nsangou , Ponnadurai Ramasami und Ousmanou Motapon
Veröffentlicht/Copyright: 18. November 2021

Abstract

In order to understand the atmospheric implication of the chlorinated hydrofluoroolefin (HFO), the geometrical structures and the IR absorption cross sections of the stereoisomers 1-chloro-3,3-difluoropropene were studied using the B3LYP/6-31G(3df) and M06-2X/6-31G(3df) methods in the gas phase. The cis-trans isomerization was assessed using the M06-2X/6-311++G(3df,p)//6-31+G(3df,p) method. The latter method was also employed for thermochemistry and the rate coefficients of the reactions of OH with the cis- and trans-isomers in the temperature ranging from 200 to 400 K. The computational method CCSD/cc-pVTZ//M06-2X/6-31+G(3df,p) was used to benchmark the rate coefficients. It turns out that, the trans-isomer is more stable than cis-isomer and the trans- to cis-isomerization is thermodynamically unfavorable. The rate coefficient follows the Gaussian law with respect to the inverse of temperature. At the global temperature of stratosphere, the calculated rate coefficients served to estimate the atmospheric lifetime along with the photochemical ozone creation potential (POCP). This yielded lifetimes of 4.31 and 7.31 days and POCPs of 3.80 and 2.23 for the cis- and trans-isomer, respectively. The radiative forcing efficiencies gave 0.0082 and 0.0152 W m−2 ppb−1 for the cis- and trans-isomer, respectively. The global warming potential approached zero for both stereoisomers at 20, 100, and 500 years time horizons.


Corresponding author: Olivier Holtomo, Department of Physics, Faculty of Science, University of Bamenda, Bambili P.O. Box 39, Cameroon; and Department of Physics, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon, e-mail:

Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications (VCCA-2020) held on-line, 1–31 August 2020.


Award Identifier / Grant number: OEA-NET 05

  1. Research funding: The authors are grateful to the Abdus Salam ICTP for their financial support to this work through the OEA-NET 05 project.

References

[1] V. L. Orkin, L. E. Martynova, M. J. Kurylo. J. Phys. Chem. A 118, 5263 (2014), https://doi.org/10.1021/jp5018949.Suche in Google Scholar PubMed

[2] T. Gierczak, M. Baasandorj, J. B. Burkholder. J. Phys. Chem. A 118, 11015 (2014), https://doi.org/10.1021/jp509127h.Suche in Google Scholar PubMed

[3] L. L. Andersen, F. F. Østerstrøm, M. P. Sulbaek Andersen, O. J. Nielsen, T. J. Wallington. Chem. Phys. Lett. 639, 289 (2015), https://doi.org/10.1016/j.cplett.2015.09.008.Suche in Google Scholar

[4] D. J. Wuebbles, D. Wang, K. O. Patten, S. C. Olsen. Geophys. Res. Lett. 40, 4767 (2013), https://doi.org/10.1002/grl.50908.Suche in Google Scholar

[5] O. Holtomo, O. Motapon, M. Nsangou. J. Phys. Chem. A 123, 10437 (2019), https://doi.org/10.1021/acs.jpca.9b08089.Suche in Google Scholar PubMed

[6] M. P. Sulbaek Andersen, E. J. K. Nilsson, O. J. Nielsen, M. S. Johnson, M. D. Hurley, T. J. Wallington. J. Photochem. Photobiol. Chem. 199, 92 (2008), https://doi.org/10.1016/j.jphotochem.2008.05.013.Suche in Google Scholar

[7] B. Baidya, A. K. Chandra. Chem. Phys. Lett. 749, 137409 (2020), https://doi.org/10.1016/j.cplett.2020.137409.Suche in Google Scholar

[8] F. Jabeen, A. Kumar, B. Rajakumar. Chem. Phys. Lett. 758, 137933 (2020), https://doi.org/10.1016/j.cplett.2020.137933.Suche in Google Scholar

[9] M.-Y. Li, F.-Y. Bai, X.-M. Pan. J. Mol. Graph. Model. 93, 107453 (2019), https://doi.org/10.1016/j.jmgm.2019.107453.Suche in Google Scholar PubMed

[10] Q. Guo, N. Zhang, T. Uchimaru, L. Chen, H. Quan, J. Mizukado. Atmos. Environ. 179, 69 (2018), https://doi.org/10.1016/j.atmosenv.2018.02.005.Suche in Google Scholar

[11] M. Balaganesh, B. Rajakumar. J. Mol. Graph. Model. 48, 60 (2014).10.1016/j.jmgm.2013.12.003Suche in Google Scholar PubMed

[12] V. L. Orkin, R. E. Huie, M. J. Kurylo. J. Phys. Chem. A 101, 9118 (1997), https://doi.org/10.1021/jp971994r.Suche in Google Scholar

[13] Ø. Hodnebrog, M. Etminan, J. S. Fuglestvedt, G. Marston, C. J. Nielsen, K. P. Shine, T. J. Wallington. Rev. Geophys. 51, 300 (2013), https://doi.org/10.1002/rog.20013.Suche in Google Scholar

[14] S. Pinnock, M. D. Hurley, K. P. Shine, T. J. Wallington, T. J. Smyth. J. Geophys. Res. 100, 23227 (1995), https://doi.org/10.1029/95jd02323.Suche in Google Scholar

[15] P. Blowers, D. M. Moline, K. F. Tetrault, R. R. Wheeler, S. L. Tuchawena. J. Geophys. Res. 112, D15108 (2007), https://doi.org/10.1029/2006JD008098.Suche in Google Scholar

[16] I. Bravo, A. Aranda, M. D. Hurley, G. Marston, D. R. Nutt, K. P. Shine, K. Smith, T. J. Wallington. J. Geophys. Res. 115, D24317 (2010), https://doi.org/10.1029/2010JD014771.Suche in Google Scholar

[17] K. Sihra, M. D. Hurley, K. P. Shine, T. J. Wallington. J. Geophys. Res. 106, 20493 (2001), https://doi.org/10.1029/2000jd900716.Suche in Google Scholar

[18] A. K. Jain, B. P. Briegleb, K. Minschwaner, D. J. Wuebbles. J. Geophys. Res. 105, 20773 (2000), https://doi.org/10.1029/2000jd900241.Suche in Google Scholar

[19] D. Voglozin, P. Cooper. J. Atmos. Chem. 74, 475 (2017), https://doi.org/10.1007/s10874-016-9353-5.Suche in Google Scholar

[20] A. Gonzalez-Lafont, T. N. Tryong, D. G. Truhlar. J. Chem. Phys. 95, 8875 (1991).10.1063/1.461221Suche in Google Scholar

[21] W. T. Duncan, R. L. Bell, T. N. Truong. J. Comput. Chem. 19, 1039 (1998), https://doi.org/10.1002/(sici)1096-987x(19980715)19:9<1039::aid-jcc5>3.0.co;2-r.10.1002/(SICI)1096-987X(19980715)19:9<1039::AID-JCC5>3.0.CO;2-RSuche in Google Scholar

[22] P. Baron. in Reaction Rate Theory and Rare Events, 227, Elsevier, ISBN:9780444563491, 1st ed. (2017).10.1016/B978-0-44-456349-1.00010-6Suche in Google Scholar

[23] M. Buchowiecki, J. Vaníček. J. Chem. Phys. 132, 194106 (2010), https://doi.org/10.1063/1.3425617.Suche in Google Scholar

[24] D. G. Truhlar, A. Kuppermann. J. Am. Chem. Soc. 93, 1840 (1971).10.1021/ja00737a002Suche in Google Scholar

[25] D. G. Truhlar, A. Kuppermann. Chem. Phys. Lett. 9, 269 (1971), https://doi.org/10.1016/0009-2614(71)85049-2.Suche in Google Scholar

[26] C. Eckart. Phys. Rev. 35, 1303 (1930), https://doi.org/10.1103/physrev.35.1303.Suche in Google Scholar

[27] T. Piansawan, N. Kungwan, S. Jungsuttiwong. Comput. Theor. Chem. 1011, 65 (2013), https://doi.org/10.1016/j.comptc.2013.02.010..Suche in Google Scholar

[28] R. T. Skodje, D. G. Truhlar. J. Phys. Chem. 85, 624 (1981), https://doi.org/10.1021/j150606a003.Suche in Google Scholar

[29] E. Wigner. Trans. Faraday Soc. 34, 29 (1938).10.1039/tf9383400029Suche in Google Scholar

[30] R. G. Derwent, M. E. Jenkin, S. M. Saunders, M. J. Pilling. Atmos. Environ. 32, 2429 (1998), https://doi.org/10.1016/s1352-2310(98)00053-3.Suche in Google Scholar

[31] M. E. Jenkin. Photochemical Ozone and PAN Creation Potentials: Rationalisation and Methods of Estimation, National Environmental Technology Centre, Culham, Oxfordshire OX14 3DB, U.K (1998), AEA Technology plc. Report AEAT-4182/20150/003.Suche in Google Scholar

[32] Q. Guo, N. Zhang, T. Uchimaru, L. Chen, H. Quan, J. Mizukado. Atmos. Environ. 179, 69 (2018), https://doi.org/10.1016/j.atmosenv.2018.02.005.Suche in Google Scholar

[33] A. D. Beche. J. Chem. Phys. 98, 5648 (1993).10.1063/1.464913Suche in Google Scholar

[34] C. T. Lee, W. T. Yang, R. G. Parr. Phys. Rev. B 37, 785 (1988), https://doi.org/10.1103/physrevb.37.785.Suche in Google Scholar PubMed

[35] Y. Zhao, D. G. Truhlar. Theor. Chem. Acc. 120, 215 (2008), https://doi.org/10.1007/s00214-007-0310-x.Suche in Google Scholar

[36] Y. Zhao, N. E. Schultz, D. G. Truhlar. J. Chem. Theor. Comput. 2, 364 (2006), https://doi.org/10.1021/ct0502763.Suche in Google Scholar PubMed

[37] Y. Zhao, D. G. Truhlar. J. Chem. Phys. 125, 194101 (2006), https://doi.org/10.1063/1.2370993.Suche in Google Scholar PubMed

[38] B. Baidya, M. Lily, A. K. Chandra. Comput. Theor. Chem. 1119, 1 (2017), https://doi.org/10.1016/j.comptc.2017.09.012.Suche in Google Scholar

[39] J. F. Stanton, R. J. Bartlett. J. Chem. Phys. 98, 7029 (1993), https://doi.org/10.1063/1.464746.Suche in Google Scholar

[40] H. Koch, P. Jørgensen. J. Chem. Phys. 93, 3333 (1990), https://doi.org/10.1063/1.458814.Suche in Google Scholar

[41] A. V. Marenich, C. J. Cramer, D. G. Truhlar. J. Phys. Chem. B 119, 958 (2015), https://doi.org/10.1021/jp506293w.Suche in Google Scholar PubMed

[42] P. Seidler, J. Kongsted, O. Christiansen. J. Phys. Chem. A 111, 11205 (2007), https://doi.org/10.1021/jp070327n.Suche in Google Scholar

[43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, USA (2009).Suche in Google Scholar

[44] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A.Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.D. Foresman, J. Fox. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT (2016).Suche in Google Scholar

[45] S. Pamidighantam, S. Nakandala, E. Abeysinghe, C. Wimalasena, S. R. Yodage, Suresh. Marru, M. Pierce, Procedia Comput. Sci., 80 1927 (2016), https://doi.org/10.1016/j.procs.2016.05.535.Suche in Google Scholar

[46] N. Shen, Y. Fan, S. Pamidighantam. J. Comput. Sci. 5, 576 (2014), https://doi.org/10.1016/j.jocs.2014.01.005.Suche in Google Scholar

[47] R. Dooley, K. Milfeld, C. Guiang, S. Pamidighantam, G. Allen. J. Grid Comput. 4, 195 (2006), https://doi.org/10.1007/s10723-006-9043-7.Suche in Google Scholar

[48] K. Milfeld, C. Guiang, S. Pamidighantam, J. Giuliani. Cluster computing through an application-oriented computational chemistry grid. In: Proceedings of the 2005 Linux Clusters: The HPC Revolution (2005).Suche in Google Scholar

[49] O. Farkas, H. B. Schlegel. Phys. Chem. Chem. Phys. 4, 11 (2002), https://doi.org/10.1039/b108658h.Suche in Google Scholar

[50] O. Holtomo, M. Nsangou, J. J. Fifen, O. Motapon. J. Chem. Chem. Eng. 7, 910 (2013).Suche in Google Scholar

[51] M. Nsangou, J. J. Fifen, Z. Dhaouadi, S. Lahmar. J. Mol. Struc-Theochem. 862, 53 (2008), https://doi.org/10.1016/j.theochem.2008.04.028.Suche in Google Scholar

[52] M-Y. Li, F-Y. Bai, X-M. Pan. J. Mol. Graph. Model. 93, 107453 (2019), https://doi.org/10.1016/j.jmgm.2019.107453.Suche in Google Scholar

[53] W. T. Duncan, R. L. Bell, T. N. Truong. J. Comput. Chem. 19, 1039 (1998), https://doi.org/10.1002/(sici)1096-987x(19980715)19:9<1039::aid-jcc5>3.0.co;2-r.10.1002/(SICI)1096-987X(19980715)19:9<1039::AID-JCC5>3.0.CO;2-RSuche in Google Scholar

[54] M. Buchowiecki, J. Vaníček. J. Chem. Phys. 132, 194106 (2010), https://doi.org/10.1063/1.3425617.Suche in Google Scholar

[55] D. G. Truhlar, A. Kuppermann. Chem. Phys. Lett. 9, 269 (1971), https://doi.org/10.1016/0009-2614(71)85049-2.Suche in Google Scholar

[56] C. Eckart. Phys. Rev. 35, 1303 (1930), https://doi.org/10.1103/physrev.35.1303.Suche in Google Scholar

[57] T. Piansawan, N. Kungwan, S. Jungsuttiwong. Comput. Theor. Chem. 1011, 65 (2013), https://doi.org/10.1016/j.comptc.2013.02.010.Suche in Google Scholar

[58] R. T. Skodje, D. G. Truhlar. J. Phys. Chem. 85, 624 (1981), https://doi.org/10.1021/j150606a003.Suche in Google Scholar

[59] B. K. Mishra, A. K. Chakrabartty, R. C. Deka. J. Mol. Model. 19, 3263 (2013), https://doi.org/10.1007/s00894-013-1865-1.Suche in Google Scholar

[60] Q. Guo, N. Zhang, T. Uchimaru, L. Chen, H. Quan, J. Mizukado. Atmos. Environ. 179, 69 (2018), https://doi.org/10.1016/j.atmosenv.2018.02.005.Suche in Google Scholar

[61] T. J. Wallington, M. P. Sulbaek Anderson, O. J. Nielson. Chemosphere 129, 135 (2015), https://doi.org/10.1016/j.chemosphere.2014.06.092.Suche in Google Scholar

[62] F. A. De Leeuw. Chemosphere 27, 1313 (1993), https://doi.org/10.1016/0045-6535(93)90226-u.Suche in Google Scholar

[63] Y. Andersson-Sköld, P. Grennfelt, K. Pleijel. Waste Manag. Assoc. 42, 1152 (1992), https://doi.org/10.1080/10473289.1992.10467060.Suche in Google Scholar

[64] M. P. Sulbaek Andersen, T. I. Sølling, L. L. Andersen, A. Volkova, D. Hovanessian, C. Britzman, O. J. Nielsen, T. J. Wallington. Phys. Chem. Chem. Phys. 20, 27949 (2018), https://doi.org/10.1039/c8cp04903c.Suche in Google Scholar

[65] R. G. Derwent, M. E. Jenkin, S. M. Saunders. Atmos. Environ. 30, 181 (1996), https://doi.org/10.1016/1352-2310(95)00303-g.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2021-0116).


Published Online: 2021-11-18
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Celebrating a centenary of macromolecules
  5. Invited papers
  6. Hermann Staudinger – Organic chemist and pioneer of macromolecules
  7. On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
  8. Dielectric properties of processed cheese
  9. Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
  10. Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
  11. Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
  12. Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
  13. Preface
  14. The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
  15. Conference papers
  16. Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
  17. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
  18. Maximizing student learning through the use of demonstrations
  19. Molecular spaces and the dimension paradox
  20. Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
  21. In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
  22. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Heruntergeladen am 12.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-0116/html
Button zum nach oben scrollen