Abstract
To commemorate the centenary of the birth of modern polymer science, a review of the life and accomplishments of Hermann Staudinger is given within the framework of the first half of the twentieth century. Staudinger is remembered for his discovery of ketenes and the Staudinger reaction, but his greatest contribution to chemistry was in developing the concept of macromolecules, for which he received the Nobel Prize in 1953.
References
[1] https://en.wikipedia.org/wiki/Hans_Staudinger.Suche in Google Scholar
[2] https://www.famousscientists.org/hermann-staudinger/.Suche in Google Scholar
[3] H. Staudinger. Chem. Ber. 39, 3062 (1906). As described in Thomas T. Tidwell, Ketenes II, Wiley & Sons, Hoboken, NJs, (2005), https://doi.org/10.1002/cber.190603903120.Suche in Google Scholar
[4] H. Staudinger. Ber. Dtsch. Chem. Ges. 38, 1735 (1905), https://doi.org/10.1002/cber.19050380283.Suche in Google Scholar
[5] R. Mühlhaupt. Angew. Chem. Int. Ed. 43, 1054 (2004).10.1002/anie.200330070Suche in Google Scholar
[6] H. Staudinger, H. W. Klever. Ber. Dtsch. Chem. Ges. 44, 2212 (1911). Patent on the preparation of 1,3-dienes by pyrolysis of 6-membered rings, e.g. isoprene from limonene, https://doi.org/10.1002/cber.19110440335.Suche in Google Scholar
[7] H. Staudinger. DRP 257 640 (1910).Suche in Google Scholar
[8] H. Staudinger. DRP 264 923 (1911).Suche in Google Scholar
[9] H. Staudinger, J. Meyer. Helv. Chim. Acta 2, 635 (1919), https://doi.org/10.1002/hlca.19190020164.Suche in Google Scholar
[10] H. Staudinger, E. Hauser. Helv. Chim. Acta 4, 861 (1921), https://doi.org/10.1002/hlca.19210040192.Suche in Google Scholar
[11] Y. G. Gololobov, I. N. Zhmurova, L. F. Kasukhin. Tetrahedron 37, 437 (1981), https://doi.org/10.1016/s0040-4020(01)92417-2.Suche in Google Scholar
[12] S. Eguchi. ARKIVOC (ii) 98-119 (2005), available at, http://www.arkat-usa.org/get-file/19558.10.3998/ark.5550190.0006.208Suche in Google Scholar
[13] C. I. Schilling, N. Jung, M. Biskup, U. Schepers, S. Bräse. Chem. Soc. Rev. 40, 4840 (2011), https://doi.org/10.1039/c0cs00123f.Suche in Google Scholar PubMed
[14] H. Staudinger, Z. Angew. Inside Chem. 35, 657 (1922), https://doi.org/10.1002/ange.19220359302.Suche in Google Scholar
[15] H. Staudinger, Z. Elektro. Inside Chem. 31, 549 (1925).Suche in Google Scholar
[16] H. Staudinger. Schweizer Patent P.94436 (1919), priority March 30, 1916.Suche in Google Scholar
[17] H. Staudinger. DRP 384295 (1920), Hungarian priority October 10, 1916.Suche in Google Scholar
[18] H. Staudinger. (Internationale Nahrungs-und Genussmittel AG), EP246454 (1926).Suche in Google Scholar
[19] H. Staudinger. (Internationale Nahrungs- und Genussmittel AG), EP286152 (1927).Suche in Google Scholar
[20] H. Staudinger. DRP 457 266 (1925).Suche in Google Scholar
[21] H. Staudinger, T. Reichstein. (Internationale Nahrungs und Genussmittel AG), AP 4448/1926 (1926).Suche in Google Scholar
[22] H. Staudinger, T. Reichstein. AP 1715795 (1927).Suche in Google Scholar
[23] T. Reichstein, H. Staudinger. Angew. Chem. 62, 292 (1950).10.1002/ange.19500621206Suche in Google Scholar
[24] T. Reichstein, H. Staudinger. Experientia 6, 280 (1950), https://doi.org/10.1007/bf02153688.Suche in Google Scholar
[25] T. Reichstein, H. Staudinger. Ciba Z. 127, 4692 (1951).Suche in Google Scholar
[26] H. Staudinger. DRP 436 442 (1924).10.1002/hlca.19240070149Suche in Google Scholar
[27] H. Staudinger. DRP 451 731 (1924).Suche in Google Scholar
[28] H. Staudinger. DRP 436 442 (1924).10.1002/hlca.19240070149Suche in Google Scholar
[29] H. Staudinger. DRP 451 731 (1924).Suche in Google Scholar
[30] H. Staudinger. Ber. Dtsch. Chem. Ges. 53, 1073 (1920), https://doi.org/10.1002/cber.19200530627.Suche in Google Scholar
[31] H. Staudinger, J. Fritschi. Helv. Chim. Acta 5, 785 (1922), https://doi.org/10.1002/hlca.19220050517.Suche in Google Scholar
[32] S. S. Pickles. J. Chem. Soc. 1085 (1910).10.1039/CT9109701085Suche in Google Scholar
[33] E. Fischer. Ber. Dtsch. Chem. Ges. 40, 1754 (1907), https://doi.org/10.1002/cber.19070400273.Suche in Google Scholar
[34] E. Fischer. Ber. Dtsch. Chem. Ges. 46, 3288 (1913), https://doi.org/10.1002/cber.191304603109.Suche in Google Scholar
[35] T. Graham. Trans. Roy. Soc. Lond. 15, 183 (1861).Suche in Google Scholar
[36] W. Ostwald. Kolloid. Z. 1, 331 (1907).10.1007/BF01813605Suche in Google Scholar
[37] H. Hlasiwetz, J. Habermann. Ann. Chem. Pharm. 159 (1871), https://doi.org/10.1002/jlac.18711590303.Suche in Google Scholar
[38] F. M. Raoult. Compt. Rend. 95, 1030 (1882).Suche in Google Scholar
[39] J. H. van’t Hoff. Z. Phys. Chem. 1, 481 (1887).10.1515/zpch-1887-0151Suche in Google Scholar
[40] J. H. van’t Hoff. Phys. Mag. 26, 81 (1888).10.1080/14786448808628243Suche in Google Scholar
[41] F. Musculus, A. Meyer. Bull. Soc. Chim. France 35, 370 (1881).Suche in Google Scholar
[42] H. T. Brown, G. H. Morris. J. Chem. Soc. 53, 610 (1888), 55, 465 (1889), https://doi.org/10.1039/ct8885300610.Suche in Google Scholar
[43] E. Paterno. Z. Phys. Chem. 4, 457 (1889).Suche in Google Scholar
[44] C. O. Weber. The Chemistry of India Rubber, p. 48, Charles Griffin & Co., London (1902).Suche in Google Scholar
[45] J. J. Berzelius. Jahresbericht über d. Fortschritte d. physikalische Wissenschaft 12, 63 (1833).Suche in Google Scholar
[46] M. Bertholet, Die chemische Synthese, Leipzig, (1877) p. 62 ff.Suche in Google Scholar
[47] M. Bertholet. Bull. Soc. Chim. (Paris) 2nd Ser. 6, 289 (1866).Suche in Google Scholar
[48] D. Braun. Chemie in unserer Zeit 46, 310 (2012), https://doi.org/10.1002/ciuz.201200566.Suche in Google Scholar
[49] H. Stobbe, G. Posniak. Ann 371, 259 (1910).10.1002/jlac.19093710302Suche in Google Scholar
[50] S. Lebedev, N. A. Skavronskaya. J. Russ. Phys. Chem. Soc. 43, 1124 (1911).Suche in Google Scholar
[51] C. Harris. Ann. Chem. 395, 211 (1913).10.1002/jlac.19133950204Suche in Google Scholar
[52] S. V. Lebedev, B. K. Merezhkovskii. J. Russ. Phys. Chem. Soc. 45, 1249 (1913).Suche in Google Scholar
[53] S. V. Lebedev. J. Russ. Phys. Chem. Soc. 45, 1296 (1913).Suche in Google Scholar
[54] S. V. Lebedev. Chem. Abstracts 9, 798 (1915).10.1126/science.42.1092.798.aSuche in Google Scholar
[55] H. Staudinger, M. Lüthy. Helv. Chim. Acta 8, 41 (1925), https://doi.org/10.1002/hlca.19250080111.Suche in Google Scholar
[56] H. Staudinger. Helv. Chim. Acta 8, 67 (1925), https://doi.org/10.1002/hlca.19250080114.Suche in Google Scholar
[57] https://www.nobelprize.org/uploads/2018/06/staudinger-lecture.pdf.Suche in Google Scholar
[58] R. J. Young, P. A. Lovell. Introduction to Polymers, p. 278, CRC, Boca Raton, 3rd ed. (2011).10.1201/9781439894156Suche in Google Scholar
[59] T. Svedberg, R. Fahreus. JACS 48, 430 (1926), https://doi.org/10.1021/ja01413a019.Suche in Google Scholar
[60] E. O. Kraemer, W. Lansing. JACS 55, 4319 (1933), https://doi.org/10.1021/ja01337a079.Suche in Google Scholar
[61] E. O. Kraemer, W. Lansing. J. Phys. Chem. 39, 153 (1935), https://doi.org/10.1021/j150362a001.Suche in Google Scholar
[62] R. Signer, H. Gross. Helv. Chim. Acta 17, 59 (1934).10.1002/hlca.19340170112Suche in Google Scholar
[63] R. Signer, H. Gross. Helv. Chim. Acta 17, 335 (1934), https://doi.org/10.1002/hlca.19340170139.Suche in Google Scholar
[64] R. Signer, H. Gross. Helv. Chim. Acta 17, 726 (1934), https://doi.org/10.1002/hlca.19340170188.Suche in Google Scholar
[65] E. Fischer. Ber. Dtsch. Chem. Ges. 40, 1754 (1907), https://doi.org/10.1002/cber.19070400273.Suche in Google Scholar
[66] H. Morawetz. Angew. Chem. 99, 95 (1987), https://doi.org/10.1002/ange.19870990204.Suche in Google Scholar
[67] H. Staudinger, W. Heuer. Ber. Dtsch. Chem. Ges. 63, 222 (1930), https://doi.org/10.1002/cber.19300630129.Suche in Google Scholar
[68] E. O. Kraemer. Ind. Eng. Chem. 30, 1200 (1938), https://doi.org/10.1021/ie50346a023.Suche in Google Scholar
[69] M. L. Huggins. J. Am. Chem. Soc. 64, 2716 (1942), https://doi.org/10.1021/ja01263a056.Suche in Google Scholar
[70] G. V. Schulz, F. Blaschke. J. Prakt. Chem. 158, 130 (1941), https://doi.org/10.1002/prac.19411580112.Suche in Google Scholar
[71] K. H. Meyer. Kolloid – Z. 53, 8 (1930).10.1007/BF01484753Suche in Google Scholar
[72] L. Onsager. Phys. Rev. A. 40, 1028 (1932).Suche in Google Scholar
[73] E. Guth, H. Mark. Ergebn. Exakt. Naturw. 113 (1933).Suche in Google Scholar
[74] I. Sakurada. Proc. Congr. Nippon Kagaku Seni Kenkuyu-sho 5, 33 (1940).Suche in Google Scholar
[75] T. Saegusa. Macromol. Symp. 98, 1199 (1995), https://doi.org/10.1002/masy.199509801108.Suche in Google Scholar
[76] H. Mark. in Der feste Körper, R. Sänger (Eds.), Hirzel, Leipzig (1938).Suche in Google Scholar
[77] R. Houwink. J. Prakt. Chem. 157, 15 (1940), https://doi.org/10.1002/prac.19401570102.Suche in Google Scholar
[78] A. Einstein. Ann. Phys. 19, 289 (1906), https://doi.org/10.1002/andp.19063240204.Suche in Google Scholar
[79] A. Einstein. Ann. Phys. 34, 591 (1911), https://doi.org/10.1002/andp.19113390313.Suche in Google Scholar
[80] P. J. Flory. Principles of Polymer Chemistry, p. 606, Cornell University Press, Ithaca (1953).Suche in Google Scholar
[81] W. Kuhn. Kolloid Z. 68, 2 (1934), https://doi.org/10.1007/bf01451681.Suche in Google Scholar
[82] B. H. Zimm. J. Chem. Phys. 24, 269 (1956), https://doi.org/10.1063/1.1742462.Suche in Google Scholar
[83] J. G. Kirkwood, J. Riseman. J. Chem. Phys. 16, 565 (1948), https://doi.org/10.1063/1.1746947.Suche in Google Scholar
[84] P. J. Flory. Principles of Polymer Chemistry, p. 622, Cornell University Press, Ithaca (1953).Suche in Google Scholar
[85] M. L. Huggins. J. Am. Chem. Soc. 64, 2716 (1942), https://doi.org/10.1021/ja01263a056.Suche in Google Scholar
[86] P. E. Rouse. J. Chem. Phys. 21, 1272 (1953), https://doi.org/10.1063/1.1699180.Suche in Google Scholar
[87] P. Muller. Pure Appl. Chem. 66, 1078 (1994), https://doi.org/10.1351/pac199466051077.Suche in Google Scholar
[88] G. P. Moss. Pure Appl. Chem. 68, 2195 (1996), https://doi.org/10.1351/pac199668122193.Suche in Google Scholar
[89] H. Staudinger. Die hochmolekularen organischen Verbindungen – Kautschuk und Cellulose, p. 164, Springer, Berlin (1932).10.1007/978-3-642-92284-8Suche in Google Scholar
[90] A. Fredgas. Presentation Speech. http://www.nobelprize.org./prizes/chemistry/1953/ceremony-speech/.Suche in Google Scholar
[91] U. Deichmann. Flüchten, Mitmachen, Vergessen – Chemiker und Biochemiker in der NS- Zeit, Wiley VCH, Weinheim (2001).10.1002/3527603026Suche in Google Scholar
[92] G. Deußling, M. Weber. Das Leben des Hermann Staudinger k-online (2012), Teil 3 Hermann Staudinger: Pazifist, Nazi, Judenbeschützer, Antisemit? Badische Zeitung 7 (2017), https://www.badische-zeitung.de/freiburg/hermann-staudinger-pazifist-nazi-judenbeschuetzer-antisemit--135423527.html.Suche in Google Scholar
© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Artikel in diesem Heft
- Frontmatter
- In this issue
- Preface
- Celebrating a centenary of macromolecules
- Invited papers
- Hermann Staudinger – Organic chemist and pioneer of macromolecules
- On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
- Dielectric properties of processed cheese
- Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
- Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
- Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
- Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
- Preface
- The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
- Conference papers
- Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
- Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
- Maximizing student learning through the use of demonstrations
- Molecular spaces and the dimension paradox
- Reaction of •OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
- In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
- Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities