Startseite Naturwissenschaften Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling

  • Jake McClements , Luciana C. Gomes , Joshua Spall , Fabien Saubade , Devine Akhidime , Marloes Peeters , Filipe J. Mergulhão und Kathryn A. Whitehead EMAIL logo
Veröffentlicht/Copyright: 1. Juli 2021

Abstract

The development of self-cleaning biomimetic surfaces has the potential to be of great benefit to human health, in addition to reducing the economic burden on industries worldwide. Consequently, this study developed a biomimetic wax surface using a moulding technique which emulated the topography of the self-cleaning Gladiolus hybridus (Gladioli) leaf. A comparison of topographies was performed for unmodified wax surfaces (control), biomimetic wax surfaces, and Gladioli leaves using optical profilometry and scanning electron microscopy. The results demonstrated that the biomimetic wax surface and Gladioli leaf had extremely similar surface roughness parameters, but the water contact angle of the Gladioli leaf was significantly higher than the replicated biomimetic surface. The self-cleaning properties of the biomimetic and control surfaces were compared by measuring their propensity to repel Escherichia coli and Listeria monocytogenes attachment, adhesion, and retention in mono- and co-culture conditions. When the bacterial assays were carried out in monoculture, the biomimetic surfaces retained fewer bacteria than the control surfaces. However, when using co-cultures of the bacterial species, only following the retention assays were the bacterial numbers reduced on the biomimetic surfaces. The results demonstrate that such surfaces may be effective in reducing biofouling if used in the appropriate medical, marine, and industrial scenarios. This study provides valuable insight into the anti-fouling physical and chemical control mechanisms found in plants, which are particularly appealing for engineering purposes.


Corresponding author: Kathryn A. Whitehead, Department of Life Sciences, Microbiology at Interfaces, Manchester Metropolitan University, Chester Street, Manchester M15GD, UK, e-mail:

Article note: A collection of invited papers from members of the IUPAC Polymer Division Celebrating a Centenary of Macromolecules.


Award Identifier / Grant number: 952471

Funding source: Portuguese Foundation for Science and Technology (FCT)

Award Identifier / Grant number: CEECIND/01700/2017

  1. Research funding: This work was financially supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 952471. L. C. Gomes acknowledges the Portuguese Foundation for Science and Technology (FCT) for the financial support of her work contract through the Scientific Employment Stimulus – Individual Call – [CEECIND/01700/2017].

References

[1] S.-H. Hsu, K. Woan, W. Sigmund. Mater. Sci. Eng. R Rep. 72, 189 (2011), https://doi.org/10.1016/j.mser.2011.05.001.Suche in Google Scholar

[2] W. Barthlott, M. Mail, C. Neinhuis. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20160191 (2016), https://doi.org/10.1098/rsta.2016.0191.Suche in Google Scholar

[3] W. Barthlott, M. Mail, B. Bhushan, K. Koch. Nano-Micro Lett. 9, 23 (2017), https://doi.org/10.1007/s40820-016-0125-1.Suche in Google Scholar

[4] F. H. Rajab, C. M. Liauw, P. S. Benson, L. Li, K. A. Whitehead. Colloids Surf. B Biointerfaces 160, 688 (2017), https://doi.org/10.1016/j.colsurfb.2017.10.008.Suche in Google Scholar

[5] F. H. Rajab, C. M. Liauw, P. S. Benson, L. Li, K. A. Whitehead. Food Bioprod. Process. 109, 29 (2018), https://doi.org/10.1016/j.fbp.2018.02.009.Suche in Google Scholar

[6] A. I. K. S. Rupp, P. Gruber. Biomimetics 4, 75 (2019), https://doi.org/10.3390/biomimetics4040075.Suche in Google Scholar

[7] J. Li, Y. Zhou, W. Wang, F. Du, L. Ren. J. Alloys Compd. 819, 152968 (2020), https://doi.org/10.1016/j.jallcom.2019.152968.Suche in Google Scholar

[8] G. Wang, Z. Guo, W. Liu. J. Bionic Eng. 11, 325 (2014), https://doi.org/10.1016/S1672-6529(14)60047-0.Suche in Google Scholar

[9] W. Barthlott, C. Neinhuis. Planta 202, 1 (1997), https://doi.org/10.1007/s004250050096.Suche in Google Scholar

[10] A. Peter, A. H. A. Lutey, S. Faas, L. Romoli, V. Onuseit, T. Graf. Opt. Laser. Technol. 123, 105954 (2020), https://doi.org/10.1016/j.optlastec.2019.105954.Suche in Google Scholar

[11] A. H. A. Lutey, L. Gemini, L. Romoli, G. Lazzini, F. Fuso, M. Faucon, R. Kling. Sci. Rep. 8, 10112 (2018), https://doi.org/10.1038/s41598-018-28454-2.Suche in Google Scholar PubMed PubMed Central

[12] F. Geyer, M. D’Acunzi, A. Sharifi-Aghili, A. Saal, N. Gao, A. Kaltbeitzel, T. F. Sloot, R. Berger, H. J. Butt, D. Vollmer. Sci. Adv. 6, eaaw9727 (2020), https://doi.org/10.1126/sciadv.aaw9727.Suche in Google Scholar PubMed PubMed Central

[13] Q. Xu, W. Zhang, C. Dong, T. S. Sreeprasad, Z. Xia. J. R. Soc. Interface 13, 20160300 (2016), https://doi.org/10.1098/rsif.2016.0300.Suche in Google Scholar PubMed PubMed Central

[14] B. Aryal, G. Neuner. Oecologia 162, 1 (2010), https://doi.org/10.1007/s00442-009-1437-3.Suche in Google Scholar PubMed

[15] B. J. Klayman, P. A. Volden, P. S. Stewart, A. K. Camper. Environ. Sci. Technol. 43, 2105 (2009), https://doi.org/10.1021/es802218q.Suche in Google Scholar PubMed

[16] A. Z. de Grandi, U. M. Pinto, M. T. Destro. World J. Microbiol. Biotechnol. 34, 61 (2018), https://doi.org/10.1007/s11274-018-2445-4.Suche in Google Scholar PubMed

[17] H. L. Røder, P. K. Raghupathi, J. Herschend, A. Brejnrod, S. Knøchel, S. J. Sørensen, M. Burmølle. Food Microbiol. 51, 18 (2015), https://doi.org/10.1016/j.fm.2015.04.008.Suche in Google Scholar PubMed

[18] J. M. R. Moreira, L. C. Gomes, K. A. Whitehead, S. Lynch, L. A. Tetlow, F. J. Mergulhão. Food Bioprod. Process. 104, 1 (2017), https://doi.org/10.1016/j.fbp.2017.03.008.Suche in Google Scholar

[19] S. K. Filoche, S. A. Anderson, C. H. Sissons. Oral Microbiol. Immunol. 19, 322 (2004), https://doi.org/10.1111/j.1399-302x.2004.00164.x.Suche in Google Scholar PubMed

[20] L. C. Gomes, J.-C. Piard, R. Briandet, F. J. Mergulhão. LWT Food Sci. Technol. 85, 309 (2017), https://doi.org/10.1016/j.lwt.2017.03.005.Suche in Google Scholar

[21] K. A. Whitehead, C. Liauw, J. S. Wilson-Nieuwenhuis, A. J. Slate, T. Deisenroth, A. Preuss, J. Verran. AIMS Bioeng. 7, 165 (2020), https://doi.org/10.3934/bioeng.2020015.Suche in Google Scholar

[22] A. Skovager, K. Whitehead, D. Wickens, J. Verran, H. Ingmer, N. Arneborg. Colloids Surf. B Biointerfaces 109, 190 (2013), https://doi.org/10.1016/j.colsurfb.2013.03.044.Suche in Google Scholar PubMed

[23] K. A. Whitehead, L. A. Smith, J. Verran. Int. J. Food Microbiol. 141, S125 (2010), https://doi.org/10.1016/j.ijfoodmicro.2010.01.012.Suche in Google Scholar PubMed

[24] C. O. Gill, N. Penney. Appl. Environ. Microbiol. 33, 1284 (1977), https://doi.org/10.1128/aem.33.6.1284-1286.1977.Suche in Google Scholar PubMed PubMed Central

[25] Y. Briers, J. Klumpp, M. Schuppler, M. J. Loessner. J. Bacteriol. 193, 4284 (2011), https://doi.org/10.1128/JB.05328-11.Suche in Google Scholar PubMed PubMed Central

[26] F. Saubade, L. I. Pilkington, C. M. Liauw, L. C. Gomes, J. McClements, M. Peeters, M. El Mohtadi, F. Mergulhão, K. A. Whitehead. Langmuir, Accepted, https://doi.org/10.1021/acs.langmuir.1c00853.10.1021/acs.langmuir.1c00853Suche in Google Scholar PubMed

[27] K. Faust, J. Raes. Nat. Rev. Microbiol. 10, 538 (2012), https://doi.org/10.1038/nrmicro2832.Suche in Google Scholar PubMed

[28] L. Benitez, A. Correa, D. Daroit, A. Brandelli. Curr. Microbiol. 62, 1017 (2011), https://doi.org/10.1007/s00284-010-9814-z.Suche in Google Scholar PubMed

[29] H. E. Daneshvar Alavi, L. Truelstrup Hansen. Biofouling 29, 1253 (2013), https://doi.org/10.1080/08927014.2013.835805.Suche in Google Scholar PubMed

[30] M. Kostaki, N. Chorianopoulos, E. Braxou, G.-J. Nychas, E. Giaouris. Appl. Environ. Microbiol. 78, 2586 (2012), https://doi.org/10.1128/AEM.07099-11.Suche in Google Scholar PubMed PubMed Central

[31] A. Bhattacharjee, M. Khan, M. Kleiman, A. I. Hochbaum. ACS Appl. Mater. Interfaces 9, 18531 (2017), https://doi.org/10.1021/acsami.7b04223.Suche in Google Scholar PubMed

[32] V. S. Saji. Colloids Surfaces A Physicochem. Eng. Asp. 602, 125132 (2020), https://doi.org/10.1016/j.colsurfa.2020.125132.Suche in Google Scholar

[33] M. A. AlMaadeed, S. Labidi, I. Krupa, M. Ouederni. Arab. J. Chem. 8, 388 (2015), https://doi.org/10.1016/j.arabjc.2014.01.006.Suche in Google Scholar

[34] L. Shen, J. Severn, C. W. M. Bastiaansen. Polymer 153, 354 (2018), https://doi.org/10.1016/j.polymer.2018.01.083.Suche in Google Scholar

[35] C. I. Idumah, C. M. Obele, E. O. Emmanuel, A. Hassan. Surf. Interfaces 21, 100734 (2020), https://doi.org/10.1016/j.surfin.2020.100734.Suche in Google Scholar PubMed PubMed Central

[36] X. Hao, W. H. Wang, Z. Yang, L. Yue, H. Sun, H. Wang, Z. Guo, F. Cheng, S. Chen. Chem. Eng. J. 356, 130 (2019), https://doi.org/10.1016/j.cej.2018.08.181.Suche in Google Scholar

[37] G. M. Intelligence. Global anti-microbial peptides market report 2030: based on peptides type, based on products, based on application & by region with COVID-19 impact | Forecast Period 2017–2030 (2020), [Online]. Available: https://www.goldsteinresearch.com/report/anti-microbial-peptides-market-outlook-2024-global-opportunity-and-demand-analysis-market-forecast-2016-2024.Suche in Google Scholar

[38] M. Kazemzadeh-Narbat, H. Cheng, R. Chabok, M. M. Alvarez, C. De La Fuente-Nunez, K. S. Phillips, A. Khademhosseini. Crit. Rev. Biotechnol. 41, 94 (2021), https://doi.org/10.1080/07388551.2020.1828810.Suche in Google Scholar PubMed

Published Online: 2021-07-01
Published in Print: 2021-10-26

© 2021 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Preface
  4. Celebrating a centenary of macromolecules
  5. Invited papers
  6. Hermann Staudinger – Organic chemist and pioneer of macromolecules
  7. On cellulose spatial organization and interactions as unraveled by diffraction and spectroscopic methods throughout the 20th century
  8. Dielectric properties of processed cheese
  9. Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling
  10. Mitigating the charge trapping effects of D-sorbitol/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer blend contacts to crystalline silicon
  11. Influence of thermal treatment on the properties and intermolecular interactions of epoxidized natural rubber-salt systems
  12. Leveraging diversity and inclusion in the polymer sciences: the key to meeting the rapidly changing needs of our world
  13. Preface
  14. The virtual conference on chemistry and its applications, VCCA-2020, 1–31 August 2020
  15. Conference papers
  16. Effect of non-competitive inhibitors of aminopeptidase N on viability of human and murine tumor cells
  17. Evaluation of the catalytic activity of graphene oxide and zinc oxide nanoparticles on the electrochemical sensing of T1R2-Rebaudioside A complex supported by in silico methods
  18. Maximizing student learning through the use of demonstrations
  19. Molecular spaces and the dimension paradox
  20. Reaction of OH with CHCl=CH-CHF2 and its atmospheric implication for future environmental-friendly refrigerant
  21. In silico study of the synergistic anti-tumor effect of hybrid topoisomerase-HDAC inhibitors
  22. Structural and electronic properties of Cu4O3 (paramelaconite): the role of native impurities
Heruntergeladen am 12.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2021-0108/html
Button zum nach oben scrollen