Startseite Corrole photochemistry
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Corrole photochemistry

  • Christopher M. Lemon

    Christopher M. Lemon was born and raised outside of Pittsburgh, Pennsylvania, USA. He studied chemistry, physics, and statistics at Ohio Northern University. He then spent a year abroad as a Fulbright scholar at the University of Auckland in New Zealand, working with Professor Penelope Brothers. In 2010, Chris began his PhD studies at The Massachusetts Institute of Technology and then Harvard University under the supervision of Professor Daniel Nocera, where he developed quantum dot-based oxygen sensors. During his graduate research, he also studied several aspects of corrole chemistry, including the photophysics, electronic structure, and photochemistry of these molecules. In 2016, Chris began postdoctoral studies at the University of California, Berkeley in the laboratory of Professor Michael Marletta as a Miller Fellow. His postdoctoral research focuses on the development of proteins with designer functions that can be utilized for biological sensing and imaging applications. He is an awardee of the 2017 IUPAC-Solvay International Award for Young Chemists.

    ORCID logo EMAIL logo
Veröffentlicht/Copyright: 28. September 2020

Abstract

The rapid expansion of photoredox catalysis and artificial photosynthesis has garnered renewed interest in the field of photochemistry. While porphyrins have been widely utilized for a variety of photochemical applications, corrole photochemistry remains underexplored, despite an exponential growth in corrole chemistry. Indeed, less than 4% of all corrole-related publications have studied the photochemistry of these molecules. Since corroles exhibit chemical properties that are distinct from porphyrins and related macrocycles, it is likely that this divergence would also be observed in their photochemical properties. This review provides a comprehensive summary of the extant corrole photochemistry literature. Corroles primarily serve as photosensitizers that transfer energy or an electron to molecular oxygen to form singlet oxygen or superoxide, respectively. While both of these reactive oxygen species can be used to drive chemical reactions, they can also be exploited for photodynamic therapy to treat cancer and other diseases. Although direct photochemical activation of metal–ligand bonds has been less explored, corroles mediate a variety of transformations, particularly oxygen atom transfer reactions. Together, these examples illustrate the diversity of corrole photochemistry and suggest that there are many additional applications yet to be discovered.


Corresponding author: Christopher M. Lemon, Miller Institute for Basic Research in Science, Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, 94720, USA, e-mail: .
Article note: A collection of peer-reviewed articles by past winners of the IUPAC and IUPAC-SOLVAY International Award for Young Chemists to celebrate the 60th anniversary of Pure and Applied Chemistry.

About the author

Christopher M. Lemon

Christopher M. Lemon was born and raised outside of Pittsburgh, Pennsylvania, USA. He studied chemistry, physics, and statistics at Ohio Northern University. He then spent a year abroad as a Fulbright scholar at the University of Auckland in New Zealand, working with Professor Penelope Brothers. In 2010, Chris began his PhD studies at The Massachusetts Institute of Technology and then Harvard University under the supervision of Professor Daniel Nocera, where he developed quantum dot-based oxygen sensors. During his graduate research, he also studied several aspects of corrole chemistry, including the photophysics, electronic structure, and photochemistry of these molecules. In 2016, Chris began postdoctoral studies at the University of California, Berkeley in the laboratory of Professor Michael Marletta as a Miller Fellow. His postdoctoral research focuses on the development of proteins with designer functions that can be utilized for biological sensing and imaging applications. He is an awardee of the 2017 IUPAC-Solvay International Award for Young Chemists.

Acknowledgments

I would like to thank Prof. Daniel G. Nocera for his guidance and support during my graduate studies. I also thank Prof. Michael A. Marletta for mentorship during my post-doctoral training. Kimberly A. Houghton and Dr. Elizabeth C. Wittenborn are thanked for critical input during the preparation of this manuscript. C.M.L acknowledges the Miller Institute for Basic Research in Science at the University of California, Berkeley for a postdoctoral fellowship.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] T. L. Poulos. Chem. Rev.114, 3919 (2014).10.1021/cr400415kSuche in Google Scholar

[2] D. von Wettstein, S. Gough, C. G. Kannangara. Plant Cell7, 1039 (1995).10.2307/3870056Suche in Google Scholar

[3] E. Raux, H. L. Schubert, M. J. Warren. Cell. Mol. Life Sci.57, 1880 (2000).10.1007/PL00000670Suche in Google Scholar

[4] A. W. Johnson, R. Price. J. Chem. Soc. 1649 (1960).10.1039/jr9600001649Suche in Google Scholar

[5] A. W. Johnson, I. T. Kay. Proc. Chem. Soc. 89 (1964).Suche in Google Scholar

[6] A. W. Johnson, I. T. Kay. J. Chem. Soc. 1620 (1965).10.1039/jr9650001620Suche in Google Scholar

[7] Z. Gross, N. Galili, I. Saltsman. Angew. Chem. Int. Ed.38, 1427 (1999).10.1002/(SICI)1521-3773(19990517)38:10<1427::AID-ANIE1427>3.0.CO;2-1Suche in Google Scholar

[8] R. Paolesse, S. Mini, F. Sagone, T. Boschi, L. Jaquinod, D. J. Nurco, K. M. Smith. Chem. Commun. 1307 (1999).10.1039/a903247iSuche in Google Scholar

[9] A. Ghosh. Chem. Rev.117, 3798 (2017).10.1021/acs.chemrev.6b00590Suche in Google Scholar

[10] J. Bendix, I. J. Dmochowski, H. B. Gray, A. Mahammed, L. Simkhovich, Z. Gross. Angew. Chem. Int. Ed.39, 4048 (2000).10.1002/1521-3773(20001117)39:22<4048::AID-ANIE4048>3.0.CO;2-7Suche in Google Scholar

[11] A. Mahammed, Z. Gross. J. Inorg. Biochem.88, 305 (2002).10.1016/S0162-0134(01)00373-7Suche in Google Scholar

[12] B. Ventura, A. D. Esposti, B. Koszarna, D. T. Gryko, L. Flamigni. New J. Chem.29, 1559 (2005).10.1039/b507979aSuche in Google Scholar

[13] T. Ding, E. A. Alemán, D. A. Modarelli, C. J. Ziegler. J. Phys. Chem. A109, 7411 (2005).10.1021/jp052047iSuche in Google Scholar

[14] C. M. Lemon, R. L. Halbach, M. Huynh, D. G. Nocera. Inorg. Chem.54, 2713 (2015).10.1021/ic502860gSuche in Google Scholar

[15] I. Aviv, Z. Gross. Chem. Commun. 1987 (2007).10.1039/b618482kSuche in Google Scholar

[16] I. Aviv-Harel, Z. Gross. Chem. Eur. J.15, 8382 (2009).10.1002/chem.200900920Suche in Google Scholar

[17] Z. Gross, G. Golubkov, L. Simkhovich. Angew. Chem. Int. Ed.39, 4045 (2000).10.1002/1521-3773(20001117)39:22<4045::AID-ANIE4045>3.0.CO;2-PSuche in Google Scholar

[18] A. Mahammed, H. B. Gray, A. E. Meier-Callahan, Z. Gross. J. Am. Chem. Soc.125, 1162 (2003).10.1021/ja028216jSuche in Google Scholar

[19] D. K. Dogutan, R. McGuire, D. G. Nocera. J. Am. Chem. Soc.133, 9178 (2011).10.1021/ja202138mSuche in Google Scholar

[20] A. Mahammed, Z. Gross. Coord. Chem. Rev.379, 121 (2019).10.1016/j.ccr.2017.08.028Suche in Google Scholar

[21] X. Jiang, R. -X. Liu, H. -Y. Liu, C. K. Chang. J. Chin. Chem. Soc.66, 1090 (2019).10.1002/jccs.201900176Suche in Google Scholar

[22] H. Agadjanian, J. Ma, A. Rentsendorj, V. Valluripalli, J. Y. Hwang, A. Mahammed, D. L. Farkas, H. B. Gray, Z. Gross, L. K. Medina-Kauwe. Proc. Natl. Acad. U.S.A.106, 6105 (2009).10.1073/pnas.0901531106Suche in Google Scholar PubMed PubMed Central

[23] J.-Y. Hwang, D. L. Farkas, L. K. Medina-Kauwe, Z. Gross, H. B. Gray. J. Biomed. Opt.16, 066007 (2011).10.1117/1.3589299Suche in Google Scholar

[24] R. Orłowski, D. Gryko, D. T. Gryko. Chem. Rev.117, 3102 (2017).10.1021/acs.chemrev.6b00434Suche in Google Scholar PubMed

[25] J. F. B. Barata, M. G. P. M. S. Neves, M. A. F. Faustino, A. C. Tomé, J. A. S. Cavalerio. Chem. Rev.117, 3192 (2017).10.1021/acs.chemrev.6b00476Suche in Google Scholar PubMed

[26] Y. Fang, Z. Ou, K. M. Kadish. Chem. Rev.117, 3377 (2017).10.1021/acs.chemrev.6b00546Suche in Google Scholar PubMed

[27] W. Zhang, W. Lai, R. Cao. Chem. Rev.117, 3717 (2017).10.1021/acs.chemrev.6b00299Suche in Google Scholar PubMed

[28] R. D. Teo, J. Y. Hwang, J. Termini, Z. Gross, H. B. Gray. Chem. Rev.117, 2711 (2017).10.1021/acs.chemrev.6b00400Suche in Google Scholar PubMed PubMed Central

[29] SciFinder (scifinder.cas.org), Chemical Abstracts Service, Columbus (2020) (accessed 14 Sep, 2020).Suche in Google Scholar

[30] J. M. R. Narayanam, C. R. J. Stephenson. Chem. Soc. Rev.40, 102 (2011).10.1039/B913880NSuche in Google Scholar

[31] J. Xuan, W. -J. Xiao. Angew. Chem. Int. Ed.51, 6828 (2012).10.1002/anie.201200223Suche in Google Scholar PubMed

[32] C. K. Prier, D. A. Rankic, D. W. C. MacMillan. Chem. Rev.113, 5322 (2013).10.1021/cr300503rSuche in Google Scholar PubMed PubMed Central

[33] N. S. Lewis, D. G. Nocera. Proc. Natl. Acad. Sci. U.S.A.103, 12729 (2006).10.1073/pnas.0601765103Suche in Google Scholar PubMed PubMed Central

[34] T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendrantah, T. S. Teets, D. G. Nocera. Chem. Rev.110, 6474 (2010).10.1021/cr100246cSuche in Google Scholar

[35] A. A. Gorman, M. A. J. Rodgers. Chem. Soc. Rev.10, 205 (1981).10.1039/cs9811000205Suche in Google Scholar

[36] C. Schweitzer, R. Schmidt. Chem. Rev.103, 1685 (2003).10.1021/cr010371dSuche in Google Scholar

[37] C. M. Lemon. Pure Appl. Chem.90, 1359 (2018).10.1515/pac-2018-0303Suche in Google Scholar

[38] D. Weldon, T. D. Poulsen, K. V. Mikkelsen, P. R. Ogilby. Photochem. Photobiol.70, 369 (1999).10.1562/0031-8655(1999)070<0369:SSTSOI>2.3.CO;2Suche in Google Scholar

[39] S. Ganguly, A. Ghosh. Acc. Chem. Res.52, 2003 (2019).10.1021/acs.accounts.9b00115Suche in Google Scholar

[40] R. F. Einrem, H. Braband, T. Fox, H. Vazquez-Lima, R. Alberto, A. Ghosh. Chem. Eur J.22, 18747 (2016).10.1002/chem.201605015Suche in Google Scholar

[41] W. Shao, H. Wang, S. He, L. Shi, K. Peng, Y. Lin, L. Zhang, L. Ji, H. Liu. J. Phys. Chem. B116, 14228 (2012).10.1021/jp306826pSuche in Google Scholar

[42] M. Soll, K. Sudhakar, N. Fridman, A. Müller, B. Röder, Z. Gross. Org. Lett.18, 5840 (2016).10.1021/acs.orglett.6b02877Suche in Google Scholar

[43] B. Babu, E. Prinsloo, J. Mack, T. Nyokong. New J. Chem.43, 18805 (2019).10.1039/C9NJ03391BSuche in Google Scholar

[44] T. V. Acunha, H. F. V. Victória, K. Krambrock, A. C. Marques, L. A. S. Costa, B. A. Iglesias. Chem. Phys. Phys. Chem.22, 16965 (2020).10.1039/D0CP02364GSuche in Google Scholar PubMed

[45] L. Shi, H.-Y. Liu, K.-M. Peng, X.-L. Wang, L.-L. You, J. Lu, L. Zhang, H. Wang, L.-N. Ji, H.-F. Jiang. Tetrahedron Lett.51, 3439 (2010).10.1016/j.tetlet.2010.04.112Suche in Google Scholar

[46] F. Zhao, X. Zhan, S.-H. Lai, L. Zhang, H.-Y. Liu. RSC Adv.9, 12626 (2019).10.1039/C9RA00928KSuche in Google Scholar PubMed PubMed Central

[47] L. Shi, H. Y. Liu, L. P. Si, K. M. Peng, L. L. You, H. Wang, L. Zhang, L. N. Ji, C. K. Chang, H. F. Jiang. Chin. Chem. Lett.21, 373 (2010).10.1016/j.cclet.2009.11.027Suche in Google Scholar

[48] Y.-M. Sun, X. Jiang, Z.-Y. Liu, L.-G. Liu, Y.-H. Liao, L. Zeng, Y. Ye, H.-Y. Liu. Eur. J. Med. Chem.208, 112794 (2020).10.1016/j.ejmech.2020.112794Suche in Google Scholar PubMed

[49] F. Cheng, H.-H. Wang, A. Ali, J. Kandhadi, H. Wang, X.-L. Wang, H.-Y. Liu. J. Porphyrins Phthalocyanines22, 886 (2018).10.1142/S1088424618500724Suche in Google Scholar

[50] S.-H. Lai, L.-L. Wang, B. Wan, A.-W. Lu, H. Wang, H.-Y. Liu. J. Photochem. Photobiol. A390, 112283 (2020).10.1016/j.jphotochem.2019.112283Suche in Google Scholar

[51] Z. Gross, H. B. Gray. Comments Inorg. Chem.27, 61 (2006).10.1080/02603590600666256Suche in Google Scholar

[52] G. R. Geier, J. F. B. Chick, J. B. Callinan, C. G. Reid, W. P. Auguscinski. J. Org. Chem.69, 4159 (2004).10.1021/jo0496493Suche in Google Scholar PubMed

[53] R. F. Einrem, A. B. Alemayehu, S. M. Borisov, A. Ghosh, O. A. Gederaas. ACS Omega5, 10596 (2020).10.1021/acsomega.0c01090Suche in Google Scholar PubMed PubMed Central

[54] S. M. Borisov, A. Alemayehu, A. Ghosh. J. Mater. Chem. C4, 5822 (2016).10.1039/C6TC01126HSuche in Google Scholar

[55] I. K. Thomassen, L. J. McCormick-McPherson, S. M. Borisov, A. Ghosh. Sci. Rep.10, 7551 (2020).10.1038/s41598-020-64389-3Suche in Google Scholar PubMed PubMed Central

[56] W. Sinha, L. Ravotto, R. Ceroni, S. Kar. Dalton Trans.44, 17767 (2015).10.1039/C5DT03041BSuche in Google Scholar PubMed

[57] A. Mahammed, K. Chen, J. Vestfrid, J. Zhao, Z. Gross. Chem. Sci.10, 7091 (2019).10.1039/C9SC01463BSuche in Google Scholar PubMed PubMed Central

[58] A. Preuß, I. Saltsman, A. Mahammed, M. Pfitzner, I. Goldberg, Z. Gross, B. Röder. J. Photochem. Photobiol. B133, 39 (2014).10.1016/j.jphotobiol.2014.02.013Suche in Google Scholar PubMed

[59] S. Dingiswayo, B. Babu, E. Prinsloo, J. Mack, T. Nyokong. J. Porphyrins Phthalocyanines24, 1138 (2020).10.1142/S1088424620500273Suche in Google Scholar

[60] O. Stern, M. Volmer. Phys. Z.20, 183 (1919).10.1177/001452461902000409Suche in Google Scholar

[61] C. M. Lemon, D. G. Nocera. Faraday Discuss.185, 249 (2015).10.1039/C5FD00093ASuche in Google Scholar PubMed

[62] C. M. Lemon, D. C. Powers, P. J. Brothers, D. G. Nocera. Inorg. Chem.56, 10991 (2017).10.1021/acs.inorgchem.7b01302Suche in Google Scholar PubMed

[63] S. M. Borisov, R. F. Einrem, A. B. Alemayehu, A. Ghosh. Photochem. Photobiol. Sci.18, 1166 (2019).10.1039/C8PP00473KSuche in Google Scholar PubMed

[64] A. A. Ghogare, A. Greer. Chem. Rev.116, 9994 (2016).10.1021/acs.chemrev.5b00726Suche in Google Scholar PubMed

[65] I. Luobenznova, M. Raizman, I. Goldberg, Z. Gross. Inorg. Chem.45, 386 (2006).10.1021/ic051483gSuche in Google Scholar

[66] L. M. Reith, M. Stiftinger, U. Monkowius, G. Knör, W. Schoefberger. Inorg. Chem.50, 6788 (2011).10.1021/ic200840mSuche in Google Scholar

[67] C. Tardieux, C. P. Gros, R. Guilard. J. Heterocyclic Chem.35, 965 (1998).10.1002/jhet.5570350430Suche in Google Scholar

[68] P. Świder, A. Nowak-Król, R. Voloshchuk, J. P. Lewtak, D. T. Gryko, W. Danikiewicz. J. Mass Spectrom.45, 1443 (2010).10.1002/jms.1860Suche in Google Scholar

[69] A. P. Castano, T. N. Demidova, M. R. Hamblin. Photodiagnosis Photodyn. Ther.1, 279 (2004).10.1016/S1572-1000(05)00007-4Suche in Google Scholar

[70] P. R. Ogilby. Chem. Soc. Rev.39, 3181 (2010).10.1039/b926014pSuche in Google Scholar PubMed

[71] C. A. Robertson, D. H. Evans, H. Abrahamse. J. Photochem. Photobiol. B96, 1 (2009).10.1016/j.jphotobiol.2009.04.001Suche in Google Scholar PubMed

[72] K. König. J. Microsc.200, 83 (2000).10.1046/j.1365-2818.2000.00738.xSuche in Google Scholar PubMed

[73] Y.-G. Wang, Z. Zhang, H. Wang, H.-Y. Liu. Bioorg. Chem.67, 57 (2016).10.1016/j.bioorg.2016.05.007Suche in Google Scholar PubMed

[74] J. Y. Hwang, D. J. Lubow, D. Chu, J. Sims, F. Alonso-Valenteen, H. B. Gray, Z. Gross, D. L. Farkas, L. K. Medina-Kauwe. J. Control. Release163, 368 (2012).10.1016/j.jconrel.2012.09.015Suche in Google Scholar PubMed PubMed Central

[75] A. B. Alemayehu, N. U. Day, T. Mani, A. B. Rudine, K. E. Thomas, O. A. Gederaas, S. A. Vinogradov, C. C. Wamser, A. Ghosh. ACS Appl. Mater. Interfaces8, 18935 (2016).10.1021/acsami.6b04269Suche in Google Scholar PubMed

[76] Z. Zhang, J.-Y. Wen, B.-B. Lv, X. Li, X. Ying, Y.-J. Wang, H.-T. Zhang, H. Wang, H.-Y. Liu, C.-K. Chang. Appl. Organometal. Chem.30, 132 (2016).10.1002/aoc.3408Suche in Google Scholar

[77] J.-M. Wang, Y. Li, H.-Q. Yuan, D.-H. Wu, X. Ying, L. Shi, H.-T. Zhang, H.-Y. Liu. Appl. Organometal. Chem.31, e3571 (2017).10.1002/aoc.3571Suche in Google Scholar

[78] Z. Liang, H. Liu, G. Jiang, J. Wen, Y. Liu, X. Xiao. Chin. J. Chem.34, 997 (2016).10.1002/cjoc.201600482Suche in Google Scholar

[79] L.-L. Wang, H. Wang, F. Cheng, Z.-H. Liang, C.-F. Liu, Y. Li, W.-Q. Wang, S.-H. Peng, X. Wang. X. Ying, L.-N. Ji, H.-Y. Liu. J. Phys. Chem. C121, 12350 (2017).10.1021/acs.jpcc.7b00168Suche in Google Scholar

[80] T. Bornhütter, N. Shamali, I. Saltsman, A. Mahammed, Z. Gross, G. Däschlein, B. Röder. J. Photochem. Photobiol. B178, 606 (2018).10.1016/j.jphotobiol.2017.12.015Suche in Google Scholar PubMed

[81] J. Pohl, I. Saltsman, A. Mahammed, Z. Gross, B. Röder. J. Appl. Microbiol.118, 305 (2014).10.1111/jam.12690Suche in Google Scholar PubMed

[82] L. M. Reith, M. Himmelsbach, W. Schoefberger, K. Knör. J. Photochem. Photobiol. A218, 247 (2011).10.1016/j.jphotochem.2011.01.008Suche in Google Scholar

[83] W. Schöfberger, F. Lengwin, L. M. Reith, M. List, G. Knör. Inorg. Chem. Commun.13, 1187 (2010).10.1016/j.inoche.2010.06.047Suche in Google Scholar

[84] A. Mahammed, Z. Gross. Angew. Chem. Int. Ed.54, 12370 (2015).10.1002/anie.201503064Suche in Google Scholar PubMed

[85] X. Zhan, P. Yadev, Y. Diskin-Posner, N. Fridman, M. Sundararajan, Z. Ullah, Q.-C. Chen, L. J. W. Shimon, A. Mahammed, D. G. Churchill, M.-H. Baik, Z. Gross. Dalton Trans.48, 12279 (2019).10.1039/C9DT02150GSuche in Google Scholar

[86] X. Zhan, P. Teplitzky, Y. Diskin-Posner, M. Sundararajan, Z. Ullah, Q.-C. Chen, L. J. W. Shimon, I. Saltsman, A. Mahammed, M. Kosa, M.-H. Baik, D. G. Churchill, Z. Gross. Inorg. Chem.58, 6184 (2019).10.1021/acs.inorgchem.9b00436Suche in Google Scholar PubMed

[87] X. Zhan, Y. Zini, N. Fridman, Q.-C. Chen, D. G. Churchill, Z. Gross. ChemPlusChem85, 163 (2020).10.1002/cplu.201900667Suche in Google Scholar

[88] X. Zhan, S. Kolanu, S. Fite, Q.-C. Chen, W. Lee, D. G. Churchill, Z. Gross. Photochem. Photobiol. Sci.19, 996 (2020).10.1039/D0PP00218FSuche in Google Scholar PubMed

[89] K. Rybicka-Jasińska, W. Shan, K. Zawada, K. M. Kadish, D. Gryko. J. Am. Chem. Soc.138, 47 (2016).10.1021/jacs.6b09036Suche in Google Scholar

[90] K. Goliszewska, K. Rybicka-Jasińska, J. A. Clark, V. I. Vullev, D. Gryko. ACS Catal.10, 5920 (2020).10.1021/acscatal.0c00200Suche in Google Scholar

[91] K. Peuntinger, T. Lazarides, D. Dafnomili, G. Charalambidis, G. Landrou, A. Kahnt, R. P. Sabatini, D. W. McCamant, D. T. Gryko, A. G. Coutsolelos, D. M. Guldi. J. Phys. Chem. C117, 1647 (2013).10.1021/jp311766sSuche in Google Scholar

[92] C. A. Joseph, P. C. Ford. J. Am. Chem. Soc.127, 6737 (2005).10.1021/ja044090+Suche in Google Scholar PubMed

[93] C. A. Joseph, M. S. Lee, A. V. Iretskii, G. Wu, P. C. Ford. Inorg. Chem.45, 2075 (2006).10.1021/ic051956jSuche in Google Scholar PubMed

[94] A. Reinholdt, A. B. Alemayehu, K. J. Gagnon, J. Bendix, A. Ghosh. Inorg. Chem.59, 5276 (2020).10.1021/acs.inorgchem.0c00654Suche in Google Scholar PubMed PubMed Central

[95] H. Fang, Z. Ling, K. Lang, P. J. Brothers, B. de Bruin, X. Fu. Chem. Sci.5, 916 (2014).10.1039/C3SC52326HSuche in Google Scholar

[96] L. Troian-Gautier, M. D. Turlington, S. A. M. Wehlin, A. B. Maurer, M. D. Brady, W. B. Swords, G. J. Meyer. Chem. Rev.119, 4628 (2019).10.1021/acs.chemrev.8b00732Suche in Google Scholar

[97] C. M. Lemon, S. J. Hwang, A. G. Maher, D. C. Powers, D. G. Nocera. Inorg. Chem.57, 5333 (2018).10.1021/acs.inorgchem.8b00314Suche in Google Scholar

[98] R. Zhang, D. N. Harischandra, M. Newcomb. Chem. Eur. J.11, 5713 (2005).10.1002/chem.200500134Suche in Google Scholar

[99] K. W. Kwong, N. F. Lee, D. Ranburger, J. Malone, R. Zhang. J. Inorg. Biochem.163, 39 (2016).10.1016/j.jinorgbio.2016.08.004Suche in Google Scholar

[100] N. F. Lee, J. Malone, H. Jeddi, K. W. Kwong, R. Zhang. Inorg. Chem. Commun.82, 27 (2017).10.1016/j.inoche.2017.05.001Suche in Google Scholar

[101] D. N. Harischandra, R. Zhang, M. Newcomb. J. Am. Chem. Soc.127, 13776 (2005).10.1021/ja0542439Suche in Google Scholar

[102] D. N. Harischandra, G. Lowery, R. Zhang, M. Newcomb. Org. Lett.11, 2089 (2009).10.1021/ol900480pSuche in Google Scholar

[103] R. Zhang, E. Vanover, T.-H. Chen, H. Thompson. Appl. Catal. A464–454, 95 (2013).10.1016/j.apcata.2013.05.025Suche in Google Scholar

[104] C. M. Lemon, A. G. Maher, A. R. Mazzotti, D. C. Powers, M. I. Gonzalez, D. G. Nocera. Chem. Commun.56, 5247 (2020).10.1039/C9CC09892ESuche in Google Scholar

[105] R. A. Eikey, S. I. Khan, M. M. Abu-Omar. Angew. Chem. Int. Ed.41, 3591 (2002).10.1002/1521-3773(20021004)41:19<3591::AID-ANIE3591>3.0.CO;2-ZSuche in Google Scholar

[106] N. Y. Edwards, R. A. Eikey, M. I. Loring, M. M. Abu-Omar. Inorg. Chem.44, 3700 (2005).10.1021/ic0484506Suche in Google Scholar PubMed

[107] H.-Q. Yuan, H.-H. Wang, J. Kandhadi, H. Wang, S.-Z. Zhan, H.-Y. Liu. Appl. Organometal. Chem.31, e3773 (2017).10.1002/aoc.3773Suche in Google Scholar

[108] J. Grodkowski, P. Neta, E. Fujita, A. Mahammed, L. Simkhovich, Z. Gross. J. Phys. Chem. A106, 4772 (2002).10.1021/jp013668oSuche in Google Scholar

Published Online: 2020-09-28
Published in Print: 2020-12-16

© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pac-2020-0703/html
Button zum nach oben scrollen