Advances in the catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(sp3)–H bonds
-
Alexander Fawcett
Alexander Fawcett completed his MSci in Chemistry at the University of Birmingham, UK, in 2014. He then moved to the University of Bristol, UK, where he completed his Ph.D. under the supervision of Professor Varinder K. Aggarwal in 2018. Here, he developed new methods for the preparation of organoboron compounds and investigated the reactivity of novel strained boronate complexes. For this work, he was awarded the 2019 IUPAC-Solvay International Award for Young Chemists and was a finalist for the Reaxys Ph.D. Prize 2019. In late 2018, he moved to the University of California, Berkeley, where he is currently working as a postdoctoral researcher under the supervision of Professor John F. Hartwig on the mechanistically-driven design and development of highly site selective C(sp 3)–H bond functionalization reactions and applying them to the late-stage functionalization of complex molecules.
Abstract
Intermolecular C(sp3)–H bond functionalization reactions promise to revolutionize how we synthesize organic molecules by enabling the introduction of functionality at previously inert sites. However, one of the greatest challenges in this research field is site-selectivity, wherein chosen C(sp3)–H bonds must be selectively functionalized and other C(sp3)–H bonds with similar stereoelectronic properties must remain intact. To address this problem, chemists have developed methods that rely on targeting innately more reactive C(sp3)–H bonds or on using pre-installed functional groups to direct a catalyst or reagent to a particular C(sp3)–H bond. However, such approaches invariably have limited applicability because only a handful of innately reactive C(sp3)–H bonds or those nearby certain functional groups can be functionalized with good site-selectivity. To overcome these limitations, chemists also have developed catalysts and reagents that control the site of C(sp3)–H bond functionalization and have begun to unlock the potential of these reactions to achieve the site-divergent functionalization of C(sp3)–H bonds, wherein the site of functionalization is changed by modulating the stereoelectronic properties of the catalyst or reagent. This short review will provide a summary of selected examples of catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(sp3)–H bonds, the factors responsible for modulating the site selectivity of these reactions, and will identify potential areas worthy of future research in this field.
About the author

Alexander Fawcett completed his MSci in Chemistry at the University of Birmingham, UK, in 2014. He then moved to the University of Bristol, UK, where he completed his Ph.D. under the supervision of Professor Varinder K. Aggarwal in 2018. Here, he developed new methods for the preparation of organoboron compounds and investigated the reactivity of novel strained boronate complexes. For this work, he was awarded the 2019 IUPAC-Solvay International Award for Young Chemists and was a finalist for the Reaxys Ph.D. Prize 2019. In late 2018, he moved to the University of California, Berkeley, where he is currently working as a postdoctoral researcher under the supervision of Professor John F. Hartwig on the mechanistically-driven design and development of highly site selective C(sp3)–H bond functionalization reactions and applying them to the late-stage functionalization of complex molecules.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] R. G. Bergman. Nature446, 391 (2007).10.1038/446391aSearch in Google Scholar PubMed
[2] M. C. White. Science335, 807 (2012).10.1126/science.1207661Search in Google Scholar PubMed
[3] J. F. Hartwig. Acc. Chem. Res.50, 549 (2017).10.1021/acs.accounts.6b00546Search in Google Scholar PubMed PubMed Central
[4] T. Cernak, K. D. Dykstra, S. Tyagarajan, P. Vachal, S. W. Krska. Chem. Soc. Rev.45, 546 (2016).10.1039/C5CS00628GSearch in Google Scholar
[5] M. Moir, J. J. Danon, T. A. Reekie, M. Kassiou. Expert Opin. Drug Discovery14, 1137 (2019).10.1080/17460441.2019.1653850Search in Google Scholar PubMed
[6] W. R. Gutekunst, P. S. Baran. Chem. Soc. Rev.40, 1976 (2011).10.1039/c0cs00182aSearch in Google Scholar PubMed
[7] D. J. Abrams, P. A. Provencher, E. J. Sorensen. Chem. Soc. Rev.47, 8925 (2018).10.1039/C8CS00716KSearch in Google Scholar
[8] B. Hong, T. Luo, X. Lei. ACS Cent. Sci.6, 622 (2020).10.1021/acscentsci.9b00916Search in Google Scholar PubMed PubMed Central
[9] R. R. Karimov, J. F. Hartwig. Angew. Chem. Int. Ed.57, 4234 (2018).10.1002/anie.201710330Search in Google Scholar PubMed PubMed Central
[10] J. B. Williamson, S. E. Lewis, R. R. JohnsonIII, I. M. Manning, F. A. Leibfarth. Angew. Chem. Int. Ed.58, 8654 (2019).10.1002/anie.201810970Search in Google Scholar PubMed
[11] C. Djerassi. Chem. Rev.43, 271 (1948).10.1021/cr60135a004Search in Google Scholar PubMed
[12] P. Skell, H. N. Baxter. J. Am. Chem. Soc.107, 2823 (1985).10.1021/ja00295a054Search in Google Scholar
[13] T. Newhouse, P. S. Baran. Angew. Chem. Int. Ed.50, 3362 (2011).10.1002/anie.201006368Search in Google Scholar PubMed PubMed Central
[14] J. F. Hartwig, M. A. Larsen. ACS Cent. Sci.2, 281 (2016).10.1021/acscentsci.6b00032Search in Google Scholar PubMed PubMed Central
[15] H. M. L. Davies, D. Morton. Chem. Soc. Rev.40, 1857 (2011).10.1039/c0cs00217hSearch in Google Scholar PubMed
[16] C. Sambiagio, D. Schönbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset, B. U. W. Maes, M. Schnürch. Chem. Soc. Rev.47, 6603 (2018).10.1039/C8CS00201KSearch in Google Scholar
[17] https://www.nsf-cchf.com/.Search in Google Scholar
[18] L. Ping, D. S. Chung, J. Bouffard, S.-g. Lee. Chem. Soc. Rev.46, 4299 (2017).10.1039/C7CS00064BSearch in Google Scholar PubMed
[19] M. S. Chen, M. C. White. Science318, 783 (2007).10.1126/science.1148597Search in Google Scholar PubMed
[20] M. S. Chen, M. C. White. Science327, 566 (2010).10.1126/science.1183602Search in Google Scholar PubMed
[21] K. Hung, M. L. Condakes, T. Morikawa, T. J. Maimone. J. Am. Chem. Soc.138, 16616 (2016).10.1021/jacs.6b11739Search in Google Scholar PubMed PubMed Central
[22] K. Hung, M. L. Condakes, L. F. T. Novaes, S. J. Harwood, T. Morikawa, Z. Yang, T. J. Maimone. J. Am. Chem. Soc.141, 3083 (2019).10.1021/jacs.8b12247Search in Google Scholar PubMed PubMed Central
[23] Q. Ye, P. Qu, S. A. Snyder. J. Am. Chem. Soc.139, 18428 (2017).10.1021/jacs.7b06185Search in Google Scholar PubMed
[24] A. S. Burns, S. D. Rychnovsky. J. Am. Chem. Soc.141, 13295 (2019).10.1021/jacs.9b05065Search in Google Scholar PubMed
[25] T. J. Osberger, D. C. Rogness, J. T. Kohrt, A. F. Stephan, M. C. White. Nature537, 214 (2016).10.1038/nature18941Search in Google Scholar PubMed PubMed Central
[26] K. E. Kim, A. M. Adams, N. D. Chiappini, J. Du Bois, B. M. Stolz. J. Org. Chem.83, 3023 (2018).10.1021/acs.joc.7b03291Search in Google Scholar PubMed
[27] T. Okuno, S. Ito, S. Ohba, Y. Nishida. J. Chem. Soc. Dalton Trans.1997, 3547 (1997).10.1039/a700030hSearch in Google Scholar
[28] K. Chen, L. QueJr. Chem. Commun.1999, 1375 (1999).10.1039/a901678cSearch in Google Scholar
[29] J. England, G. J. P. Britovsek, N. Rabadia, A. J. P. White. Inorg. Chem.46, 3752 (2007).10.1021/ic070062rSearch in Google Scholar PubMed
[30] M. C. White, J. Zhao. J. Am. Chem. Soc.140, 13988 (2018).10.1021/jacs.8b05195Search in Google Scholar PubMed PubMed Central
[31] P. E. Gormisky, M. C. White. J. Am. Chem. Soc.135, 14052 (2013).10.1021/ja407388ySearch in Google Scholar PubMed
[32] L. Gómez, M. Canta, D. Font, I. Prat, X. Ribas, M. Costas. J. Org. Chem.78, 1421 (2013).10.1021/jo302196qSearch in Google Scholar PubMed
[33] L. Gómez, I. Garcia-Bosch, A. Company, J. Benet-Buchholz, A. Polo, X. Sala, X. Ribas, M. Costas. Angew. Chem. Int. Ed.48, 5720 (2009).10.1002/anie.200901865Search in Google Scholar PubMed
[34] I. Prat, L. Gómez, M. Canta, X. Ribas, M. Costas. Chem. Eur. J.19, 1908 (2013).10.1002/chem.201203281Search in Google Scholar PubMed
[35] H. M. L. Davies. J. Org. Chem.84, 12722 (2019).10.1021/acs.joc.9b02428Search in Google Scholar PubMed PubMed Central
[36] H. M. L. Davies, K. Liao. Nat. Rev. Chem.3, 347 (2019).10.1038/s41570-019-0099-xSearch in Google Scholar PubMed PubMed Central
[37] C. Qin, H. M. L. Davies. J. Am. Chem. Soc.136, 9792 (2014).10.1021/ja504797xSearch in Google Scholar PubMed
[38] K. Liao, T. C. Pickel, V. Boyarskikh, J. Basca, D. G. Musaev, H. M. L. Davies. Nature551, 609 (2017).10.1038/nature24641Search in Google Scholar PubMed
[39] K. Liao, S. Negretti, D. G. Musaev, J. Basca, H. M. L. Davies. Nature533, 230 (2016).10.1038/nature17651Search in Google Scholar PubMed
[40] K. Liao, Y.-F. Yang, Y. Li, J. N. Sanders, K. N. Houk, D. G. Musaev, H. M. L. Davies. Nat. Chem.10, 1048 (2018).10.1038/s41557-018-0087-7Search in Google Scholar PubMed PubMed Central
[41] W. Liu, Z. Ren, A. T. Bosse, K. Liao, E. L. Goldstein, J. Bacsa, D. G. Musaev, B. M. Stoltz, H. M. L. Davies. J. Am. Chem. Soc.140, 12247 (2018).10.1021/jacs.8b07534Search in Google Scholar PubMed
[42] W. Liu, T. Babl, A. Röther, O. Reiser, H. M. L. Davies. Chem. Eur. J.26, 4236 (2020).10.1002/chem.201905773Search in Google Scholar
[43] D. Vidal, G. Olivo, M. Costas. Chem. Eur. J.24, 5042 (2018).10.1002/chem.201704852Search in Google Scholar
[44] R. Breslow, Y. Huang, X. Zhang, J. Yang. Proc. Natl. Acad. Sci. U.S.A.94, 11156 (1997).10.1073/pnas.94.21.11156Search in Google Scholar
[45] R. Breslow, X. Zhang, Y. Huang. J. Am. Chem. Soc.119, 4535 (1997).10.1021/ja9704951Search in Google Scholar
[46] J. Yang, R. Breslow. Angew. Chem. Int. Ed.39, 2692 (2000).10.1002/1521-3773(20000804)39:15<2692::AID-ANIE2692>3.0.CO;2-3Search in Google Scholar
[47] S. Das, C. D. Incarvito, R. H. Crabtree, G. W. Brudvig. Science312, 1941 (2006).10.1126/science.1127899Search in Google Scholar
[48] J. R. Frost, S. M. Huber, S. Breitenlechner, C. Bannwarth, T. Bach. Angew. Chem. Int. Ed.54, 691 (2014).Search in Google Scholar
[49] R. Breslow, D. Heyer. Tetrahedron Lett.24, 5039 (1983).10.1016/S0040-4039(00)94035-8Search in Google Scholar
[50] G. Olivo, G. Farinelli, A. Barbieri, O. Lanzalunga, S. Di Stefano, M. Costas. Angew. Chem. Int. Ed.56, 16347 (2017).10.1002/anie.201709280Search in Google Scholar
[51] R. V. Ottenbacher, D. G. Samsonenko, E. P. Talsi, K. P. Bryliakov. Org. Lett.14, 4310 (2012).10.1021/ol3015122Search in Google Scholar
[52] M. Knezevic, M Heilmann, G. M. Piccini, K. Tiefenbacher. Angew. Chem. Int. Ed.59, 12387 (2020).10.1002/anie.202004242Search in Google Scholar
[53] G. Olivo, G. Capocasa, B. Ticconi, O. Lanzalunga, S. Di Stefano, M. Costas. Angew. Chem. Int. Ed.59, 12703 (2020).10.1002/anie.202003078Search in Google Scholar PubMed
[54] G. Olivo, G. Capocasa, O. Lanzalunga, S. Di Stefano, M. Costas. Chem. Commun.55, 917 (2019).10.1039/C8CC09328HSearch in Google Scholar
[55] F. Burg, S. Breitenlechner, C. Jandl, T. Bach. Chem. Sci.11, 2121 (2020).10.1039/C9SC06089HSearch in Google Scholar PubMed PubMed Central
[56] J. T. Groves, W. J. KruperJr, R. C. Haushalter. J. Am. Chem. Soc.102, 6375 (1980).10.1021/ja00540a050Search in Google Scholar
[57] F. Burg, M. Gicquel, S. Breitenlechner, A. Pöthig, T. Bach. Angew. Chem. Int. Ed.57, 2953 (2018).10.1002/anie.201712340Search in Google Scholar PubMed
[58] C. G. Newton, S.-G. Wang, C. O. Oliveira, N. Cramer. Chem. Rev.117, 8908 (2017).10.1021/acs.chemrev.6b00692Search in Google Scholar PubMed
[59] T. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu. Science359, eaao4798 (2018).10.1126/science.aao4798Search in Google Scholar PubMed PubMed Central
[60] D. Font, M. Canta, M. Milan, O. Cussó, X. Ribas, R. J. M. K. Gebbink, M. Costas. Angew. Chem. Int. Ed.55, 5776 (2016).10.1002/anie.201600785Search in Google Scholar PubMed
[61] I. Coldham, D. Leonori. Org. Lett.10, 3923 (2008).10.1021/ol801579rSearch in Google Scholar PubMed
[62] A. Millet, P. Larini, E. Clot, O. Baudoin. Chem. Sci.4, 2241 (2013).10.1039/c3sc50428jSearch in Google Scholar
[63] A. Millet, D. Dailler, P. Larini, O. Baudoin. Angew. Chem. Int. Ed.53, 2678 (2014).10.1002/anie.201310904Search in Google Scholar PubMed
[64] W. Lin, K.-F. Zhang, O. Baudoin. Nat. Catal.2, 882 (2019).10.1038/s41929-019-0336-1Search in Google Scholar PubMed PubMed Central
[65] P. Beak, S. T. Kerrick, S. Wu, J. Chu. J. Am. Chem. Soc.116, 3231 (1994).10.1021/ja00087a008Search in Google Scholar
[66] V. A. Schmidt, R, K. Quinn, A. T. Brusoe, E. J. Alexanian. J. Am. Chem. Soc.136, 14389 (2014).10.1021/ja508469uSearch in Google Scholar PubMed
[67] J. M. Tedder. Angew. Chem. Int. Ed. Engl.21, 401 (1982).10.1002/anie.198204011Search in Google Scholar
[68] Y. Wang, G.-X. Li, G. Yang, G. He, G. Chen. Chem. Sci.7, 2679 (2016).10.1039/C5SC04169DSearch in Google Scholar
[69] R. K. Quinn, Z. A. Könst, S. E. Michalak, Y. Schmidt, A. R. Szklarski, A. R. Flores, S. Nam, D. A. Horne, C. D. Vanderwal, E. J. Alexanian. J. Am. Chem. Soc.138, 696 (2016).10.1021/jacs.5b12308Search in Google Scholar PubMed PubMed Central
[70] W. L. Czaplyski, C. G. Na, E. J. Alexanian. J. Am. Chem. Soc.138, 13854 (2016).10.1021/jacs.6b09414Search in Google Scholar PubMed PubMed Central
[71] M. M. Tierney, S. Crespi, D. Ravelli, E. J. Alexanian. J. Org. Chem.84, 12983 (2019).10.1021/acs.joc.9b01774Search in Google Scholar PubMed PubMed Central
[72] A. M. Carestia, D. Ravelli, E. J. Alexanian. Chem. Sci.9, 5360 (2018).10.1039/C8SC01756ESearch in Google Scholar PubMed PubMed Central
[73] K. Zhang, B. M. Shafer, M. D. DemarsII, H. A. Stern, R. Fasan. J. Am. Chem. Soc.134, 18695 (2012).10.1021/ja3073462Search in Google Scholar PubMed PubMed Central
[74] V. Dantignana, M. Milan, O. Cussó, A. Company, M. Bietti, M. Costas. ACS Cent. Sci.3, 1350 (2017).10.1021/acscentsci.7b00532Search in Google Scholar PubMed PubMed Central
[75] M. Borrell, S. Gil-Caballero, M. Bietti, M. Costas. ACS Catal.10, 4702 (2020).10.1021/acscatal.9b05423Search in Google Scholar
[76] W. Liu, X. Huang, M.-J. Cheng, R. J. Nielsen, W. A. GoddardIII, J. T. Groves. Science337, 1322 (2012).10.1126/science.1222327Search in Google Scholar PubMed
[77] W. Liu, J. T. Groves. J. Am. Chem. Soc.132, 12847 (2010).10.1021/ja105548xSearch in Google Scholar PubMed
[78] X. Huang, T. M. Bergsten, J. T. Groves. J. Am. Chem. Soc.137, 5300 (2015).10.1021/jacs.5b01983Search in Google Scholar PubMed
[79] G. Li, A. K. Dilger, P. T. Cheng, W. R. Ewing, J. T. Groves. Angew. Chem. Int. Ed.57, 1251 (2018).10.1002/anie.201710676Search in Google Scholar PubMed
[80] A. Bakhoda, Q. Jiang, Y. M. Badiei, J. A. Bertke, T. R. Cundari, T. H. Warren. Angew. Chem. Int. Ed.58, 3421 (2019).10.1002/anie.201810556Search in Google Scholar PubMed
[81] X. Huang, T. Zhuang, P. A. Kates, H. Gao, X. Chen, J. T. Groves. J. Am. Chem. Soc.139, 15407 (2017).10.1021/jacs.7b07658Search in Google Scholar PubMed
[82] B. R. Cook, T. J. Reinert, K. S. Suslick. J. Am. Chem. Soc.108, 7281 (1986).10.1021/ja00283a024Search in Google Scholar
[83] M. D. Tzirakis, I. N. Lykakis, M. Orfanopoulos. Chem. Soc. Rev.38, 2609 (2009).10.1039/b812100cSearch in Google Scholar PubMed
[84] D. Ravelli, S. Protti, M. Fagnoni. Acc. Chem. Res.49, 2232 (2016).10.1021/acs.accounts.6b00339Search in Google Scholar PubMed
[85] D. M. Schultz, F. Lévesque, D. A. DiRocco, M. Reibarkh, Y. Ji, L. A. Joyce, J. F. Dropinski, H. Sheng, B. D. Sherry, I. W. Davies. Angew. Chem. Int. Ed.56, 15274 (2017).10.1002/anie.201707537Search in Google Scholar PubMed
[86] S. D. Halperin, H. Fan, S. Chang, R. E. Martin, R. Britton. Angew. Chem. Int. Ed.53, 4690 (2014).10.1002/anie.201400420Search in Google Scholar PubMed
[87] I. B. Perry, T. F. Brewer, P. J. Sarver, D. M. Schultz, D. A. DiRocco, D. W. C. MacMillan. Nature560, 70 (2018).10.1038/s41586-018-0366-xSearch in Google Scholar PubMed PubMed Central
[88] P. J. Sarver, V. Bacauanu, D. M. Schultz, D. A. DiRocco, Y.-h. Lam, E. C. Sherer, D. W. C. MacMillan. Nat. Chem.12, 459 (2020).10.1038/s41557-020-0436-1Search in Google Scholar PubMed
[89] D. Ravelli, M. Fagnoni, T. Fukuyama, T. Nishikawa, I. Ryu. ACS Catal.8, 701 (2018).10.1021/acscatal.7b03354Search in Google Scholar
[90] H. Sommer, F. Juliá-Hernández, R. Martin, I. Marek. ACS Cent. Sci.4, 153 (2018).10.1021/acscentsci.8b00005Search in Google Scholar PubMed PubMed Central
[91] G. -X. Li, X. Hu, G. He, G. Chen. ACS Catal.8, 11847 (2018).10.1021/acscatal.8b04079Search in Google Scholar
[92] T. Kato, K. Maruoka. Angew. Chem. Int. Ed.59, 14261 (2020).10.1002/anie.202003982Search in Google Scholar PubMed
© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Pure and Applied Chemistry Diamond Jubilee Issue
- Invited papers
- Harnessing host–guest interactions to control structure at the nanoscale
- Corrole photochemistry
- Restructuring of ultra-thin branches in multi-nucleated silicon nanowires
- Multidimensional graphene nanostructures – synthesis and applications
- Electrochemical flow systems enable renewable energy industrial chain of CO2 reduction
- A retrospective on MXene-based composites for solar fuel production
- Radicals in prebiotic chemistry
- Advances in the catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(sp3)–H bonds
- Reaction of Amines with NO at room temperature and atmospheric pressure: is nitroxyl a reaction intermediate?
- A Puerto Rican chemist with coffee
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Pure and Applied Chemistry Diamond Jubilee Issue
- Invited papers
- Harnessing host–guest interactions to control structure at the nanoscale
- Corrole photochemistry
- Restructuring of ultra-thin branches in multi-nucleated silicon nanowires
- Multidimensional graphene nanostructures – synthesis and applications
- Electrochemical flow systems enable renewable energy industrial chain of CO2 reduction
- A retrospective on MXene-based composites for solar fuel production
- Radicals in prebiotic chemistry
- Advances in the catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(sp3)–H bonds
- Reaction of Amines with NO at room temperature and atmospheric pressure: is nitroxyl a reaction intermediate?
- A Puerto Rican chemist with coffee