Restructuring of ultra-thin branches in multi-nucleated silicon nanowires
-
Youjin V. Lee
, Lingyuan Meng
, Eleanor Ostroff
and Bozhi Tian
Dr. Bozhi Tian received the B.S. and M.S. degrees in chemistry from Fudan University. Shanghai, China, and the A.M. and Ph.D. degrees in physical chemistry from Harvard University in 2010. As an Associate Professor in the Department of Chemistry at the University of Chicago, his current research focuses on the semiconductor-enabled understanding of subcellular biophysics, as well as studies of dynamics at soft-hard interfaces. He is an awardee for the 2011 IUPAC-Solvay International Award for Young Chemists.
Abstract
The synthetic tunability of semiconductor nanowires has enabled researchers to apply these materials in a variety of applications from energy harvesting to biological stimulation. One of the most intensely researched areas is the synthesis of branched nanowires, or nano-tree structures, owing to their high surface area. In this paper, we present a synthetic protocol that enables the growth of ultra-thin nanowire branches on a primary nanowire. Specifically, the method yields tightly distributed branches, whose locality is unique to our method. We furthermore induce the transformation of these branches into spheroidal superstructures. We explain how an Ostwald ripening-like mechanism can account for such a transformation. We suggest how our method can expand the synthetic toolset of branched nanowires, thus enabling the development of applications.
Article note: A collection of peer-reviewed articles by past winners of the IUPAC and IUPAC-SOLVAY International Award for Young Chemists to celebrate the 60th anniversary of Pure and Applied Chemistry.
About the author

Dr. Bozhi Tian received the B.S. and M.S. degrees in chemistry from Fudan University. Shanghai, China, and the A.M. and Ph.D. degrees in physical chemistry from Harvard University in 2010. As an Associate Professor in the Department of Chemistry at the University of Chicago, his current research focuses on the semiconductor-enabled understanding of subcellular biophysics, as well as studies of dynamics at soft-hard interfaces. He is an awardee for the 2011 IUPAC-Solvay International Award for Young Chemists.
References
[1] B. Guan, R. P. Scott, C. Qin, N. K. Fontaine, T. Su, C. Ferrari, M. Cappuzzo, F. Klemens, B. Keller, M. Earnshaw, S. J. B. Yoo. Opt. Express22, 145 (2014).10.1364/OE.22.000145Search in Google Scholar PubMed
[2] T. J. Kempa, C. M. Lieber. Pure Appl. Chem.86, 13 (2014).10.1515/pac-2014-5010Search in Google Scholar
[3] A. Zhang, C. M. Lieber. Chem. Rev.116, 215 (2016).10.1021/acs.chemrev.5b00608Search in Google Scholar PubMed PubMed Central
[4] Y. Jiang, B. Tian. Nat. Rev. Mater.3, 473 (2018).10.1038/s41578-018-0062-3Search in Google Scholar PubMed PubMed Central
[5] L. N. Quan, J. Kang, C.-Z. Ning, P. Yang. Chem. Rev.119, 9153 (2019).10.1021/acs.chemrev.9b00240Search in Google Scholar PubMed
[6] Y. V. Lee, B. Tian. Nano Lett.19, 2189 (2019).10.1021/acs.nanolett.9b00388Search in Google Scholar PubMed PubMed Central
[7] R. Chen, A. Canales, P. Anikeeva. Nat. Rev. Mater.2, 16093 (2017).10.1038/natrevmats.2016.93Search in Google Scholar PubMed PubMed Central
[8] H. Acarón Ledesma, X. Li, J. L. Carvalho-de-Souza, W. Wei, F. Bezanilla, B. Tian. Nat. Nanotechnol.14, 645 (2019).10.1038/s41565-019-0487-xSearch in Google Scholar PubMed PubMed Central
[9] R. G. Hobbs, N. Petkov, J. D. Holmes. Chem. Mater.24, 1975 (2012).10.1021/cm300570nSearch in Google Scholar
[10] F. M. Ross. Rep. Prog. Phys.73, 114501 (2010).10.1088/0034-4885/73/11/114501Search in Google Scholar
[11] B. Tian, P. Xie, T. J. Kempa, D. C. Bell, C. M. Lieber. Nat. Nanotechnol.4, 824 (2009).10.1038/nnano.2009.304Search in Google Scholar PubMed PubMed Central
[12] Z. Luo, Y. Jiang, B. D. Myers, D. Isheim, J. Wu, J. F. Zimmerman, Z. Wang, Q. Li, Y. Wang, X. Chen, V. P. Dravid, D. N. Seidman, B. Tian. Science348, 1451 (2015).10.1126/science.1257278Search in Google Scholar PubMed
[13] S. Kim, D. J. Hill, C. W. Pinion, J. D. Christesen, J. R. McBride, J. F. Cahoon. ACS Nano11, 4453 (2017).10.1021/acsnano.7b00457Search in Google Scholar PubMed
[14] C. Yang, Z. Zhong, C. M. Lieber. Science310, 1304 (2005).10.1126/science.1118798Search in Google Scholar PubMed
[15] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber. Nature449, 885 (2007).10.1038/nature06181Search in Google Scholar PubMed
[16] K. Jun, J. M. Jacobson. Nano Lett.10, 2777 (2010).10.1021/nl100662zSearch in Google Scholar PubMed
[17] K. A. Dick, K. Deppert, M. W. Larsson, T. Mårtensson, W. Seifert, L. R. Wallenberg, L. Samuelson. Nat. Mater.3, 380 (2004).10.1038/nmat1133Search in Google Scholar PubMed
[18] G. S. Doerk, N. Ferralis, C. Carraro, R. Maboudian. J. Mater. Chem.18, 5376 (2008).10.1039/b811535dSearch in Google Scholar
[19] M. J. Bierman, S. Jin. Energy Environ. Sci.2, 1050 (2009).10.1039/b912095eSearch in Google Scholar
[20] C. Liu, J. Tang, H. M. Chen, B. Liu, P. Yang. Nano Lett.13, 2989 (2013).10.1021/nl401615tSearch in Google Scholar PubMed
[21] R. Banan Sadeghian, M. Saif Islam. Nat. Mater.10, 135 (2011).10.1038/nmat2944Search in Google Scholar PubMed
[22] D. Gaboriau, D. Aradilla, M. Brachet, J. Le Bideau, T. Brousse, G. Bidan, P. Gentile, S. Sadki. RSC Adv.6, 81017 (2016).10.1039/C6RA14806ASearch in Google Scholar
[23] G. S. Doerk, V. Radmilovic, R. Maboudian. Appl. Phys. Lett.96, 123117 (2010).10.1063/1.3374328Search in Google Scholar
[24] J. B. Hannon, S. Kodambaka, F. M. Ross, R. M. Tromp. Nature. 440, 69 (2006).10.1038/nature04574Search in Google Scholar PubMed
[25] C. Xie, L. Hanson, W. Xie, Z. Lin, B. Cui, Y. Cui. Nano Lett.10, 4020 (2010).10.1021/nl101950xSearch in Google Scholar PubMed PubMed Central
[26] S. Qi, C. Yi, S. Ji, C.-C. Fong, M. Yang. ACS Appl. Mater. Interfaces1, 30 (2009).10.1021/am800027dSearch in Google Scholar PubMed
[27] V. A. Sivakov, R. Scholz, F. Syrowatka, F. Falk, U. Gösele, S. H. Christiansen. Nanotechnology20, 405607 (2009).10.1088/0957-4484/20/40/405607Search in Google Scholar PubMed
[28] B. J. Kim, J. Tersoff, S. Kodambaka, J.-S. Jang, E. A. Stach, F. M. Ross. Nano Lett.14, 4554 (2014).10.1021/nl501582qSearch in Google Scholar PubMed
[29] K. Nagashima, T. Yanagida, K. Oka, H. Tanaka, T. Kawai. Appl. Phys. Lett.93, 153103 (2008).10.1063/1.2978347Search in Google Scholar
[30] O. Lotty, R. Hobbs, C. O’Regan, J. Hlina, C. Marschner, C. O’Dwyer, N. Petkov, J. D. Holmes. Chem. Mater.25, 215 (2013).10.1021/cm3032863Search in Google Scholar
[31] V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Yu. B. Samsonenko, V. M. Ustinov. Phys. Rev. B71, 205325 (2005).10.1103/PhysRevB.71.205325Search in Google Scholar
[32] Y. Zhu, W. Zhou, S. Wang, T. Ji, X. Hou, Q. Cai. J. Appl. Phys.100, 114312 (2006).10.1063/1.2398002Search in Google Scholar
[33] H. Ham, N.-H. Park, S. S. Kim, H. W. Kim. Sci. Rep.4, 1 (2014).10.1038/srep03579Search in Google Scholar
[34] Y. V. Lee, D. Wu, Y. Fang, Y. Peng, B. Tian. Nano Lett.20, 3852 (2020).10.1021/acs.nanolett.0c00974Search in Google Scholar PubMed PubMed Central
[35] P. Madras, E. Dailey, J. Drucker. Nano Lett.9, 3826 (2009).10.1021/nl902013gSearch in Google Scholar PubMed
[36] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, C. M. Lieber. Nano Lett.4, 433 (2004).10.1021/nl035162iSearch in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/pac-2020-0602).
© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Pure and Applied Chemistry Diamond Jubilee Issue
- Invited papers
- Harnessing host–guest interactions to control structure at the nanoscale
- Corrole photochemistry
- Restructuring of ultra-thin branches in multi-nucleated silicon nanowires
- Multidimensional graphene nanostructures – synthesis and applications
- Electrochemical flow systems enable renewable energy industrial chain of CO2 reduction
- A retrospective on MXene-based composites for solar fuel production
- Radicals in prebiotic chemistry
- Advances in the catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(sp3)–H bonds
- Reaction of Amines with NO at room temperature and atmospheric pressure: is nitroxyl a reaction intermediate?
- A Puerto Rican chemist with coffee
Articles in the same Issue
- Frontmatter
- In this issue
- Preface
- Pure and Applied Chemistry Diamond Jubilee Issue
- Invited papers
- Harnessing host–guest interactions to control structure at the nanoscale
- Corrole photochemistry
- Restructuring of ultra-thin branches in multi-nucleated silicon nanowires
- Multidimensional graphene nanostructures – synthesis and applications
- Electrochemical flow systems enable renewable energy industrial chain of CO2 reduction
- A retrospective on MXene-based composites for solar fuel production
- Radicals in prebiotic chemistry
- Advances in the catalyst- and reagent-controlled site-divergent intermolecular functionalization of C(sp3)–H bonds
- Reaction of Amines with NO at room temperature and atmospheric pressure: is nitroxyl a reaction intermediate?
- A Puerto Rican chemist with coffee