Startseite Homogenization effect on precipitation kinetics and mechanical properties of an extruded AA7050 alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Homogenization effect on precipitation kinetics and mechanical properties of an extruded AA7050 alloy

  • Ş. Hakan Atapek EMAIL logo , İrfan Eker , Fulya Kahrıman und Şeyda Polat
Veröffentlicht/Copyright: 7. Oktober 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, effect of homogenization on precipitation kinetics and mechanical properties during aging in AA7050 alloy was investigated. The billet material produced by direct chill method was homogenized at 470 °C for 12–20 h and then extruded to form T-profile. The electrical conductivity of the alloy aged at 120 and 185 °C for 0–36 h were measured and precipitation kinetics were calculated based on the relationship between increased electrical conductivity and amount of precipitates during aging. Time dependent precipitation fraction change curves using Avrami equations revealed that precipitation accelerated as the homogenization time increased due to increased nucleation and growth rates of precipitates. Peak hardness values in aging were reached depending on the increase in homogenization time, however, lower peak hardness (∼185 HV) was determined at 185 °C aging compared to the obtained ones (195–197 HV) at 120 °C aging. Depending on the increase in homogenization time, an increase trend in strength was detected in peak aged alloys. The application of longer time homogenization and subsequent aging caused an increase in strengths. The studied homogenization and aging conditions could be a useful guide for achieving the highest strength and ideal elongation values in commercial practice for the AA7050 alloy.


Corresponding author: Ş. Hakan Atapek, Department of Metallurgical and Materials Engineering, Kocaeli University, Umuttepe Campus, 41001, Kocaeli, Turkey, E-mail:

  1. The author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] S. K. Das and W. Yin, “The worldwide aluminium economy: the current state of the industry,” J. Met., vol. 59, no. 11, pp. 57–63, 2007, https://doi.org/10.1007/s11837-007-0142-0.Suche in Google Scholar

[2] E. A. StarkeJr. and J. T. Staley, “Application of modern aluminum alloys to aircraft,” Prog. Aerosp. Sci., 32, nos. 2–3, pp. 131–172, 1996, https://doi.org/10.1016/0376-0421(95)00004-6.Suche in Google Scholar

[3] A. E. A. Chemin, C. M. Afonso, F. A. Pascoal, C. I. dos Santos Maciel, C. O. F. T. Ruchert, and W. W. B. Filho, “Characterization of phases, tensile properties, and fracture toughness in aircraft-grade aluminum alloy,” Mat. Des Pro. Commun., vol. 1, no. e79, pp. 1–13, 2019, https://doi.org/10.1002/mdp2.79.Suche in Google Scholar

[4] H. B. Younis, K. Kamal, M. F. Sheikh, and A. Hamza, “Prediction of fatigue crack growth rate in aircraft aluminum alloys using optimized neural networks,” Theor. Appl. Fract. Mech., vol. 117, 2022, Art no. 103196, https://doi.org/10.1016/j.tafmec.2021.103196.Suche in Google Scholar

[5] M. O. Speidel, “Stress corrosion cracking of aluminum alloys,” Metall. Trans. A., vol. 6, pp. 631–651, 1975, https://doi.org/10.1007/BF02672284.Suche in Google Scholar

[6] R. G. Guan and D. Tie, “A review on grain refinement of aluminum alloys: progresses, challenges and prospects,” Acta Metall. Sin., vol. 30, no. 5, pp. 409–432, 2017, https://doi.org/10.1007/s40195-017-0565-8.Suche in Google Scholar

[7] M. Tajally, Z. Huda, and H. H. Masjuki, “Effect of deformation and recrystallization conditions on tensile behavior of aluminum alloy 7075,” Met. Sci. Heat Treat., vol. 53, nos. 3–4, pp. 165–168, 2011, https://doi.org/10.1007/s11041-011-9361-7.Suche in Google Scholar

[8] D. Xu, K. Chen, Y. Chen, and S. Chen, “Evolution of the second-phase particles and their effect on tensile fracture behavior of 2219 Al-xCu alloys,” Metals, vol. 10, no.2, pp. 197, 2020, https://doi.org/10.3390/met10020197.Suche in Google Scholar

[9] M. Dixit, R. S. Mishra, and K. K. Sankaran, “Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys,” Mater. Sci. Eng., A, vol. 478, nos. 1–2, pp. 163–172, 2008, https://doi.org/10.1016/j.msea.2007.05.116.Suche in Google Scholar

[10] A. Gloria, R. Montanari, M. Richetta, and A. Varone, “Alloys for aeronautic applications: state of the art and perspectives,” Metals, vol. 9, no. 6, p. 662, 2019, https://doi.org/10.3390/met9060662.Suche in Google Scholar

[11] A. Karaaslan, I. Kaya, and H. Atapek, “Tensile strength and impact toughness of an AA7075 T6 alloy,” Mater. Test., vol. 50, no. 5, pp. 256–258, 2008, https://doi.org/10.3139/120.100882.Suche in Google Scholar

[12] T. Sonar, V. Balasubramanian, and S. Malarvizhi, “Mitigation of heat treatment distortion of AA 7075 aluminum alloy by deep cryogenic processing using the Navy C-ring test,” Mater. Test., vol. 63, no. 8, pp. 758–763, 2021, https://doi.org/10.1515/mt-2020-0121.Suche in Google Scholar

[13] K. R. Cardoso, D. N. Travessa, A. G. Escorial, and M. Lieblich, “Effect of mechanical alloying and Ti addition on solution and ageing treatment of an AA7050 aluminium alloy,” Mater. Res., vol. 10, no. 2, pp. 199–203, 2007, https://doi.org/10.1590/S1516-14392007000200017.Suche in Google Scholar

[14] W. Li, Y. Liu, S. Jiang et al.., “A study of thermomechanical behaviour and grain size evolution of AA7050 under hot forging conditions,” Int. J. Lightweight Mater. Manuf., vol. 2, no. 1, pp. 31–39, 2019, https://doi.org/10.1016/j.ijlmm.2018.10.002.Suche in Google Scholar

[15] K. Kang, D. Li, A. Wang, D. Shi, G. Gao, and Z. Xu, “Experimental investigation on aging treatment of 7050 alloy assisted by electric pulse,” Results Phys., vol. 16, 2020, Art no. 103016, https://doi.org/10.1016/j.rinp.2020.103016.Suche in Google Scholar

[16] J. P. Li, J. Shen, X. D. Yan, B. P. Mao, and L. M. Yan, “Microstructure evolution of 7050 aluminum alloy during hot deformation,” Trans. Nonferrous Metals Soc. China, vol. 20, no. 2, pp. 189–194, 2010, https://doi.org/10.1016/S1003-6326(09)60119-9.Suche in Google Scholar

[17] F. G. Cong, G. Zhao, F. Jiang, N. Tian, and R. F. Li, “Effect of homogenization treatment on microstructure and mechanical properties of DC cast 7X50 aluminum alloy,” Trans. Nonferrous Metals Soc. China, vol. 25, no. 4, pp. 1027–1034, 2015, https://doi.org/10.1016/S1003-6326(15)63694-9.Suche in Google Scholar

[18] P. Jia, Y. Cao, Y. Geng, L. He, N. Xiao, and J. Cui, “Studies on the microstructures and properties in phase transformation of homogenized 7050 alloy,” Mater. Sci. Eng., A, vol. 612, pp. 335–342, 2014, https://doi.org/10.1016/j.msea.2014.06.027.Suche in Google Scholar

[19] X. Fan, D. Jiang, Q. Meng, and L. Zhong, “The microstructural evolution of an Al-Zn-Mg-Cu alloy during homogenization,” Mater. Lett., vol. 60, no. 12, pp. 1475–1479, 2006, https://doi.org/10.1016/j.matlet.2005.11.049.Suche in Google Scholar

[20] Z. Cao, Y. Feng, T. Li, and J. Wang, “Variation of the microstructure of ingots of DC cast alloy 7050 during homogenization,” Met. Sci. Heat Treat., vol. 52, nos. 3–4, pp. 179–182, 2010, https://doi.org/10.1007/s11041-010-9251-4.Suche in Google Scholar

[21] J. T. Staley, “Aging kinetics of aluminum alloy 7050,” Metall. Mater. Trans. B, vol. 5, pp. 929–932, 1974, https://doi.org/10.1007/BF02643150.Suche in Google Scholar

[22] Ş. H. Atapek, “Effect of cobalt on the aging kinetics and the properties of a CuCoNiBe alloy,” Mater. Test., vol. 57, no. 1, pp. 17–21, 2015, https://doi.org/10.3139/120.110669.Suche in Google Scholar

[23] F. Kahrıman and M. Zeren, “The effect of Zr on aging kinetics and properties of as-cast AA6082 alloy,” Int. J. Metalcast., vol. 11, no. 2, pp. 216–222, 2017, https://doi.org/10.1007/s40962-016-0047-1.Suche in Google Scholar

[24] A. Staszczyk, J. Sawicki, and B. Adamczyk-Cieslak, “A study of second-phase precipitates and dispersoid particles in 2024 aluminum alloy after different aging treatments,” Materials, vol. 12, no. 4168, pp. 1–10, 2019, https://doi.org/10.3390/ma12244168.Suche in Google Scholar PubMed PubMed Central

Published Online: 2022-10-07
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2022-0190/html
Button zum nach oben scrollen