Startseite Optimization of constrained mechanical design problems using the equilibrium optimization algorithm
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimization of constrained mechanical design problems using the equilibrium optimization algorithm

  • Hammoudi Abderazek

    Dr. Hammoudi Abderazek received his Ph.D. in Mechanical Engineering from the Institute of Optics and Precision Mechanics, Setif -1- University, Algeria. His research interests include multidisciplinary design optimization and metaheuristic optimization techniques. Dr. Abderazek has been working at the Mechanical Research Center (CRM), Constantine, Algeria.

    , Ali Riza Yildiz

    Dr. Ali Rıza Yıldız is a Professor in the Department of Automotive Engineering, Bursa Uludağ University, Bursa, Turkey. His research interests are the finite element analysis of automobile components, lightweight design, composite materials, vehicle design, vehicle crashworthiness, shape and topology optimization of vehicle components, meta-heuristic optimization techniques, and sheet metal forming. He has been serving as an Associate Editor for the Journal of Expert Systems, Wiley.

    EMAIL logo
    und Sadiq M. Sait

    Dr. Sadiq M. Sait received his Bachelor’s degree in Electronics Engineering from Bangalore University, India, in 1981, and his Master’s and Ph.D. degrees in Electrical Engineering from the King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, in 1983 and 1987, respectively. He is currently a Professor of Computer Engineering and Director of the Center for Communications and IT Research, KFUPM, Dhahran, Saudi Arabia. He is a Senior Member of the IEEE. In 1981, he received the Best Electronic Engineer Award from the Indian Institute of Electrical Engineers, Bengaluru.

Veröffentlicht/Copyright: 30. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work, the optimization of structural and mechanical problems is carried out using the equilibrium optimizer (EO), which is a recent physical-based algorithm.The the ten-bar planar truss structure, planetary gearbox, hydrostatic thrust bearing, and robot gripper mechanism problems are solved using the EO algorithm. The results achieved using the EO in solving these problems are compared with those of recent algorithms. The computational results show that EO yields better outcomes and competitive results that can also be applied for the other problems studied.


Prof. Dr. Ali Rıza Yıldız Department of Automotive Engineering Uludağ University Görükle, Bursa, Turkey

About the authors

Dr. Hammoudi Abderazek

Dr. Hammoudi Abderazek received his Ph.D. in Mechanical Engineering from the Institute of Optics and Precision Mechanics, Setif -1- University, Algeria. His research interests include multidisciplinary design optimization and metaheuristic optimization techniques. Dr. Abderazek has been working at the Mechanical Research Center (CRM), Constantine, Algeria.

Prof. Dr. Ali Riza Yildiz

Dr. Ali Rıza Yıldız is a Professor in the Department of Automotive Engineering, Bursa Uludağ University, Bursa, Turkey. His research interests are the finite element analysis of automobile components, lightweight design, composite materials, vehicle design, vehicle crashworthiness, shape and topology optimization of vehicle components, meta-heuristic optimization techniques, and sheet metal forming. He has been serving as an Associate Editor for the Journal of Expert Systems, Wiley.

Dr. Sadiq M. Sait

Dr. Sadiq M. Sait received his Bachelor’s degree in Electronics Engineering from Bangalore University, India, in 1981, and his Master’s and Ph.D. degrees in Electrical Engineering from the King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, in 1983 and 1987, respectively. He is currently a Professor of Computer Engineering and Director of the Center for Communications and IT Research, KFUPM, Dhahran, Saudi Arabia. He is a Senior Member of the IEEE. In 1981, he received the Best Electronic Engineer Award from the Indian Institute of Electrical Engineers, Bengaluru.

Acknowledgment

The authors express their gratitude to Bursa Uludağ University, Bursa, Turkey, and King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for support in this research.

References

1 H. Abderazek, A. R. Yildiz, S. M. Sait: Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 121-136 DOI:10.1504/IJVD.2019.10986210.1504/IJVD.2019.109862Suche in Google Scholar

2 H. Abderazek, A. R. Yildiz, S. M. Sait: Mechanical engineering design optimisation using novel adaptive differential evolution algorithm, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 285-329 DOI:10.1504/IJVD.2019.10987310.1504/IJVD.2019.109873Suche in Google Scholar

3 B. S. Yıldız: The spotted hyena optimizationalgorithm for weight-reduction of automobile brake components, Materials Testing 62 (2020), No. 4, pp. 383-388 DOI:10.3139/120.11149510.3139/120.111495Suche in Google Scholar

4 B. S. Yildiz: The mine blast algorithm for the structural optimization of electrical vehicle components, Materials Testing 62 (2020), No. 5, pp. 497-501 DOI:10.3139/120.11151110.3139/120.111511Suche in Google Scholar

5 E. Demirci, A. R. Yıldız: An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers, Materials Testing 60 (2018), No. 7-8, pp. 661-668 DOI:10.3139/120.11120110.3139/120.111201Suche in Google Scholar

6 H. Abderazek, A. R. Yildiz, S. Mirjalili: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism, Knowledge-Based Systems 105 (2020), No. 105237 DOI:10.1016/j.knosys.2019.10523710.1016/j.knosys.2019.105237Suche in Google Scholar

7 E. Kurtuluş, A. R. Yildiz, S. M. Sait, S. Bureerat: A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails, Materials Testing 62 (2020), No. 3, pp. 251-260 DOI:10.3139/120.11147810.3139/120.111478Suche in Google Scholar

8 B. S. Yildiz, A. R. Yildiz, N. Pholdee, S. Bureerat, S. M. Sait, V. Patel: The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components, Materials Testing 62 (2020), No. 3, pp. 261-264 DOI:10.3139/120.11147910.3139/120.111479Suche in Google Scholar

9 H. Ozkaya, M. Yildiz, A. R. Yildiz, S. Bureerat, B. S. Yildiz, Sadiq M. Sait: The equilibrium optimizationalgorithm and the response surface based metamodel for optimal structural design of vehicle components, Materials Testing 62 (2020), pp. 492-496 DOI:10.3139/120.11150910.3139/120.111509Suche in Google Scholar

10 P. Champasak, N.Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz: Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle, Aerospace Science and Technology 100 (2020), pp. 1-11 DOI:10.1016/j.ast.2020.10578310.1016/j.ast.2020.105783Suche in Google Scholar

11 T. Guler, A. Demirci, A. R. Yıldız, U. Yavuz: Lightweight design of an automobile hinge component using glass fiber polyamide composites, Materials Testing 60 (2018), No. 3, pp. 306-310 DOI:10.3139/120.11115210.3139/120.111152Suche in Google Scholar

12 A. R. Yildiz, H. Abderazek, S. Mirjalili: A Comparative Study of Recent Non-traditional Methods for Mechanical Design Optimization, Archives of Computational Methods in Engineering 27 (2020), pp. 1031-1048 DOI:10.1007/s11831-019-09343-x10.1007/s11831-019-09343-xSuche in Google Scholar

13 A. R. Yildiz, B. S. Yildiz, S. M. Sait, X. Li: The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations, Materials Testing 61 (2019), pp. 725-733 DOI:10.3139/120.11137710.3139/120.111377Suche in Google Scholar

14 A. R. Yildiz, B. S. Yildiz, S. M. Sait, S. Bureerat, N. Pholdee: A new hybrid Harris hawks Nelder-Mead optimization algorithm for solving design and manufacturing problems, Materials Testing 61 (2019), No. 8, pp. 735-743 DOI:10.3139/120.11137810.3139/120.111378Suche in Google Scholar

15 B. S. Yildiz, A. R. Yildiz: The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components, Materials Testing 61 (2019), pp. 744-748 DOI:10.3139/120.11137910.3139/120.111379Suche in Google Scholar

16 F. Hamza, H. Abderazek, S. Lakhdar, D. Ferhat, A. R. Yildiz: Optimum design of cam-roller follower mechanism using a new evolutionary algorithm, The International Journal of Advanced Manufacturing Technology 99 (2018), No. 5-8, pp. 1261-1282 DOI:10.1007/s00170-018-2543-310.1007/s00170-018-2543-3Suche in Google Scholar

17 B. S. Yildiz, A. R. Yildiz: Comparison of grey wolf, whale, water cycle, moth-flame and sine-cosine algorithms for the optimization of a vehicle engine connecting rod, Materials Testing 60 (2018), No. 3, pp. 311-315 DOI:10.3139/120.11115310.3139/120.111153Suche in Google Scholar

18 H. Abderazek, D. Ferhat, A. Ivana: Adaptive mixed differential evolution algorithm for biobjective tooth profile spur gear optimization, The International Journal of Advanced Manufacturing Technology 90 (2017), No. 5-8, pp. 2063-2073 DOI:10.1007/s00170-016-9523-210.1007/s00170-016-9523-2Suche in Google Scholar

19 A. R. Yildiz: A novel hybrid whale nelder mead algorithm for optimization of design and manufacturing problems, International Journal of Advanced Manufacturing Technology 105 (2019), pp. 5091-5104 DOI:10.1007/s00170-019-04532-110.1007/s00170-019-04532-1Suche in Google Scholar

20 B. S. Yıldız, N. Pholdee, S. Bureerat, A. R. Yildiz, Sadiq M. Sait: Sine-cosine optimization algorithm for the conceptual design of automobile components, Materials Testing 62 (2020), pp. 744-748 DOI:10.3139/120.11154110.3139/120.111541Suche in Google Scholar

21 A. Karaduman, B. S. Yıldız, A. R. Yıldız: Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry, International Journal of Vehicle Design 80 (2020), No. 2-4, pp. 330-345 DOI:10.1504/IJVD.2019.10987510.1504/IJVD.2019.109875Suche in Google Scholar

22 B. Aslan, A. R. Yildiz: Optimum design of automobile components using lattice structures for additive manufacturing, Materials Testing 52 (2020), No. 6, pp. 633-639 DOI:10.3139/120.11152710.3139/120.111527Suche in Google Scholar

23 B. S. Yildiz: A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems, International Journal of Vehicle Design 73 (2017), No. 1-3, pp. 208-218 DOI:10.1504/IJVD.2017.08260310.1504/IJVD.2017.082603Suche in Google Scholar

24 N. Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz, Sadiq M. Sait: Seagull optimization algorithm for solving real-world design optimization problems, Materials Testing 62 (2020), pp. 640-644 DOI:10.3139/120.11152910.3139/120.111529Suche in Google Scholar

25 P. P. Prajapati, V. K. Patel: Thermo-economic optimization of a nanofluid based organic Rankine cycle: a multiobjective study and analysis, Thermal Science and Engineering Progress (2019), No. 100381 DOI:10.1016/j.tsep.2019.10038110.1016/j.tsep.2019.100381Suche in Google Scholar

26 A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. L. Chen: Harris hawks optimization: Algorithm and applications, Future generation computer systems 97 (2019), pp. 849-872 DOI:10.1016/j.future.2019.02.02810.1016/j.future.2019.02.028Suche in Google Scholar

27 E. Demirci, A. R. Yıldız: A new hybrid approach for reliability-based design optimization of structural components, Materials Testing 61 (2019), No. 2, pp. 111-119 DOI:10.3139/120.11129110.3139/120.111291Suche in Google Scholar

28 H. Abderazek, D. Ferhat, I. Atanasovska, K. Boualem: A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears, Advances in Mechanical Engineering 7 (2015), No. 9, pp. 1-11 DOI:10.1177/168781401560500810.1177/1687814015605008Suche in Google Scholar

29 T. Kunakote, S. Bureerat: Multiobjective topology optimization using evolutionary algorithms, Engineering Optimization 43 (2011), No. 5, pp. 541-557 DOI:10.1080/0305215X.2010.50293510.1080/0305215X.2010.502935Suche in Google Scholar

30 A. R. Yildiz, F. Öztürk: Hybrid Taguchi-harmony search approach for shape optimization, Studies in Computational Intelligence 270 (2010), pp. 89-98 DOI:10.1007/978-3-642-04317-8_810.1007/978-3-642-04317-8_8Suche in Google Scholar

31 A. Kaveh, S. Talatahari: An improved ant colony optimization for constrained engineering design problems, Engineering Computations 27 (2010), pp. 155-182 DOI:10.1108/0264440101100857710.1108/02644401011008577Suche in Google Scholar

32 A. R. Yıldız, U. A. Kılıçarpa, E. Demirci: Topography and topology optimization of diesel engine components for light-weight design in the automotive industry, Materials Testing 61 (2019), No. 1, pp. 27-34 DOI:10.3139/120.11127710.3139/120.111277Suche in Google Scholar

33 B. S. Yildiz: Natural frequency optimization of vehicle components using the interior search algorithm, Materials Testing 59 (2017), No. 5, pp. 456-458 DOI:10.3139/120.11101810.3139/120.111018Suche in Google Scholar

34 G. G. Tejani, N. Pholdee, S. Bureerat, D. Prayogo, A. H. Gandomi: Structural optimization using multiobjective modified adaptive symbiotic organisms search, Expert Systems with Applications 125 (2019), pp. 425-441 DOI:10.1016/j.eswa.2019.01.06810.1016/j.eswa.2019.01.068Suche in Google Scholar

35 C. Qi, S. Yang, F. Dong: Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading, Thin-Walled Structures 59 (2012), pp. 103-119 DOI:10.1016/j.tws.2012.05.00810.1016/j.tws.2012.05.008Suche in Google Scholar

36 X. Suchao, L. Haihong, Y. Weilin, N. Wang: Crashworthiness optimisation of a composite energy-absorbing structure for railway vehicles. Structural and Multidisciplinary Optimization 57 (2018), No. 4, pp. 1793-1807 DOI:10.1007/s00158-017-1829-710.1007/s00158-017-1829-7Suche in Google Scholar

37 J. Huang, L. Gao, X. Li: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes, Applied Soft Computing 36 (2015), pp. 349-356 DOI:10.1016/j.asoc.2015.07.03110.1016/j.asoc.2015.07.031Suche in Google Scholar

38 A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili: Equilibrium optimizer: A novel optimization algorithm, Knowledge-Based Systems 191 (2020), pp. 105190 DOI:10.1016/j.knosys.2019.10519010.1016/j.knosys.2019.105190Suche in Google Scholar

39 T. Dede: Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures, KSCE Journal of Civil Engineering 18 (2014), No. 6, pp. 1759-1767 DOI:10.1007/s12205-014-0553-810.1007/s12205-014-0553-8Suche in Google Scholar

40 B. W. Xiang, R. Q. Chen, T. Zhang: Optimization of trusses using simulated annealing for discrete variables, Proc. of the International Conference on Image Analysis and Signal Processing (2009l), pp. 410-41410.1109/IASP.2009.5054647Suche in Google Scholar

41 A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi: Mine blast algorithm for optimization of truss structures with discrete variables, Computers and Structures 102 (2012), pp. 49-63 DOI:10.1016/j.compstruc.2012.03.01310.1016/j.compstruc.2012.03.013Suche in Google Scholar

42 V. Ho-Huu, T. Nguyen-Thoi, T. Vo-Duy, T. Nguyen-Trang: An adaptive elitist differential evolution for truss optimization with discrete variables, Computers and Structures 165 (2016), pp. 59-75 DOI:10.1016/j.compstruc.2015.11.01410.1016/j.compstruc.2015.11.014Suche in Google Scholar

43 S. O. Degertekin, L. Lamberti, I. B. Ugur: Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm, Applied Soft Computing 79 (2019), pp. 363-390 DOI:10.1016/j.asoc.2019.03.05810.1016/j.asoc.2019.03.058Suche in Google Scholar

44 M. Y. Cheng, D. Prayogo, Y. W. Wu, M. M. Lukito: A hybrid harmony search algorithm for discrete sizing optimization of truss structure, Automation in Construction 69 (2016), pp. 21-33 DOI:10.1016/j.autcon.2016.05.02310.1016/j.autcon.2016.05.023Suche in Google Scholar

45 P. Simionescu, D. Beale, G. V. Dozier: Teeth-number synthesis of a multispeed planetary transmission using an estimation of distribution algorithm, Journal of mechanical design 128 (2006), No. 1, pp. 108-115 DOI:10.1115/1.211486710.1115/1.2114867Suche in Google Scholar

46 P. Savsani, V. Savsani: Passing vehicle search (PVS): A novel metaheuristic algorithm, Applied Mathematical Modelling 40 (2016), No. 5-6, pp. 3951-3978 DOI:10.1016/j.apm.2015.10.04010.1016/j.apm.2015.10.040Suche in Google Scholar

47 J. Zhang, M. Xiao, L.Gao, Q. Pan: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems, Applied Mathematical Modelling 63 (2018), pp. 464-490 DOI:10.1016/j.apm.2018.06.03610.1016/j.apm.2018.06.036Suche in Google Scholar

48 C. Coello: Treating constraints as objectives for single-objective evolutionary optimization, Engineering Optimization A 35 (2000), No. 3, pp. 275-308 DOI:10.1080/0305215000894130110.1080/03052150008941301Suche in Google Scholar

49 A. W. Mohamed: A novel differential evolution algorithm for solving constrained engineering optimization problems, Journal of Intelligent Manufacturing 29 (2018), No. 3, pp. 659-692 DOI:10.1007/s10845-017-1294-610.1007/s10845-017-1294-6Suche in Google Scholar

50 W. Gong, Z. Cai, D. Liang: Engineering optimization by means of an improved constrained differential evolution, Computer Methods in Applied Mechanics and Engineering 268 (2014), pp. 884-904 DOI:10.1016/j.cma.2013.10.01910.1016/j.cma.2013.10.019Suche in Google Scholar

51 R. V. Rao, V. J. Savsani, D. P. Vakharia: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Computer-Aided Design 43 (2011), No. 3, pp. 303-315 DOI:10.1016/j.cad.2010.12.01510.1016/j.cad.2010.12.015Suche in Google Scholar

52 A. Osyczka, S. Krenich, K. Karas: Optimum design of robot grippers using genetic algorithms, Proc. of the Third World Congress of Structural and Multidisciplinary Optimization, (WCSMO), Buffalo, New York (1999), pp. 241-243Suche in Google Scholar

53 A. Trivedi, D. Srinivasan, N. Biswas: An improved unified differential evolution algorithm for constrained optimization problems, Proc. of 2018 IEEE Congress on Evolutionary Computation (2018), pp. 1-1010.1109/CEC.2017.7969446Suche in Google Scholar

54 M. Hellwig, H. Beyer: A Matrix Adaptation Evolution Strategy for Constrained Real-Parameter Optimization, Proc. of the IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil (2018), pp. 1-8 DOI:10.1109/CEC.2018.8477950.10.1109/CEC.2018.8477950Suche in Google Scholar

55 Z. Fan, Y. Fang, W. Li, Y. Yuan, Z. Wang, X. Bian: LSHADE44 with an Improved epsilon Constraint-Handling Method for Solving Constrained Single-Objective Optimization Problems. In 2018 IEEE Congress on Evolutionary Computation (CEC) (2018, July), pp. 1-8, IEEE10.1109/CEC.2018.8477943Suche in Google Scholar

56 İ. Aydoğdu: Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights, Engineering Optimization, 49 (2017), No. 3, pp.381-400 DOI:10.1080/0305215X.2016.119183710.1080/0305215X.2016.1191837Suche in Google Scholar

57 B. S. Yildiz: Slime mould algorithm and kriging surrogate model-based approach for enhanced crashworthiness of electric vehicles, International Journal of Vehicle Design 83 (2020), No. 1, pp. 54-68 DOI:10.1504/IJVD.2020.11478610.1504/IJVD.2020.114786Suche in Google Scholar

58 B. S. Yildiz: Robust design of electric vehicle components using a new hybrid salp swarm algorithm and radial basis function-based approach, International Journal of Vehicle Design 83 (2020), No. 1, pp. 38-53 DOI:10.1504/IJVD.2020.11477910.1504/IJVD.2020.114779Suche in Google Scholar

59 H. Abderazek, F. Hamza, A. R. Yildiz, S. M. Sait: Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design, Materials Testing 63 (2021) 3, pp. 266-271 DOI:10.1515/mt-2020-003910.1515/mt-2020-0039Suche in Google Scholar

60 B. S Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Comparision of the political optimization algorithm, the Archimedes optimization algorithm and the Levy flight algorithm for design optimization in industry, Materials Testing 63 (2021) 4, pp. 356-359 DOI:10.1515/mt-2020-00510.1515/mt-2020-005Suche in Google Scholar

61 B. S Yildiz, V. Patel, N. Pholdee, S. M. Sait, S. Bureerat, A. R. Yildiz: Conceptual comparison of the ecogeography-based algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design, Materials Testing, 63 (2021) 4, pp. 336-340 DOI: 10.1515/mt-2020-004910.1515/mt-2020-0049Suche in Google Scholar

62 A. R. Yildiz: Designing of optimum vehicle components using new generation optimization methods, Journal of Polytechnic 20 (2017), No. 2, pp. 319-323 DOI:10.2339/2017.20.2 325-3310.2339/2017.20.2325-33Suche in Google Scholar

63 B. S Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm, Expert Systems 38 (3) 2021, e12666 DOI:10.1111/exsy.1266610.1111/exsy.12666Suche in Google Scholar

64 A. R. Yildiz, M. U. Erdaş: A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems, Materials Testing 63 (2021), pp. 157-162 DOI: 10.1515/mt-2020-002210.1515/mt-2020-0022Suche in Google Scholar

65 A. R. Yildiz, N. Kaya, N. Öztürk, F. Öztürk: Hybrid approach for genetic algorithm and Taguchi’s method based design optimization in the automotive industry, International Journal of Production Research 44 (2006), No. 22, pp. 4897-4914 DOI:10.1080/0020754060061993210.1080/00207540600619932Suche in Google Scholar

66 Z. Meng, G. Li, X. Wang, S. M. Sait, A. R. Yildiz: A comparative study of metaheuristic algorithms for reliability-based design optimization problems, Archives of Computational Methods in Engineering 28 (2021), pp. 1853-1869 DOI:10.1007/s11831-020-09443-z10.1007/s11831-020-09443-zSuche in Google Scholar

67 B. Crawford, R. Soto, E. Monfroy, W. Palma, C. Castro, F. Paredes: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization, Expert Systems with Applications 40 (2013), pp. 1690-1695 DOI:10.1016/j.eswa.2012.09.01310.1016/j.eswa.2012.09.013Suche in Google Scholar

68 E. Demirci, A. R. Yıldız: An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures, Materials Testing 60 (2018), No. 6, pp. 553-561 DOI:10.3139/120.11118710.3139/120.111187Suche in Google Scholar

69 S. Zhang, Z. Ren, C. Li, J. Xuan:A perturbation adaptive pursuit strategy based hyper-heuristic for multi-objective optimization problems. Swarm and Evolutionary Computation 54 (2020), No. 100647 DOI:10.1016/j.swevo.2020.10064710.1016/j.swevo.2020.100647Suche in Google Scholar

70 B. S. Yildiz, A. R. Yildiz, E. I. Albak, H. Abderazek, Sadiq M. Sait, S. Bureerat: Butterfly optimization algorithm for optimum shape design of automobile suspension components, Materials Testing 62 (2020), No. 4, pp. 365-370 DOI:10.3139/120.11149210.3139/120.111492Suche in Google Scholar

Published Online: 2021-06-30
Published in Print: 2021-06-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Artikel in diesem Heft

  1. Frontmatter
  2. Component-oriented testing and simulation
  3. Influence of various procedures for the determination of flow curves on the predictive accuracy of numerical simulations for mechanical joining processes
  4. Mechanical testing
  5. Innovative bond strength testing of tin-based alloys for sliding bearings on steel supports
  6. Corrosion testing
  7. Corrosion behavior of a new 25Cr-3Ni-7Mn-0.66 N duplex stainless steel in artificial seawater
  8. Mechanical testing
  9. Ballistic performance of powder metal Al5Cu-B4C composite as monolithic and laminated armor
  10. Component-oriented testing and simulation
  11. Performance assessments of the material for the traction motor cores of an electric racing kart
  12. Materials testing for welding and additive manufacturing applications
  13. Microstructure and strain rate-dependent deformation behavior of PBF-EB Ti6Al4V lattice structures
  14. Materialography/Analysis of physical properties
  15. Structural, electronic and thermodynamic investigation of Ag2GdSi, Ag2GdSn and Ag2Gd Pb Heusler alloys: First-principles calculations
  16. Component-oriented testing and simulation
  17. Application of an inventive problem solving approach for developing new generation vehicle crash boxes
  18. Hybrid Taguchi-Lévy flight distribution optimization algorithm for solving real-world design optimization problems
  19. Optimization of constrained mechanical design problems using the equilibrium optimization algorithm
  20. Component-Oriented teasting and simulation
  21. A novel hybrid water wave optimization algorithm for solving complex constrained engineering problems
  22. Mechanical Testing
  23. Performance evaluation of artificial neural networks for identification of failure modes in composite plates
  24. Production-oriented testing
  25. Optimization of electrohydraulic forming process parameters using the response surface methodology
  26. Production-oriented teating
  27. Experimental and numerical investigation of the thrust force and temperature generation during a drilling process
Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/mt-2020-0092/html
Button zum nach oben scrollen