Startseite Mathematik Convergence of bivariate exponential sampling series in logarithmic weighted spaces of functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Convergence of bivariate exponential sampling series in logarithmic weighted spaces of functions

  • Tuncer Acar und Sadettin Kursun EMAIL logo
Veröffentlicht/Copyright: 9. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present paper, we introduce bivariate logarithmic weighted spaces of functions and study approximation properties of bivariate exponential sampling series in these spaces. We obtain pointwise and uniform convergence of the series and we determine rate of convergence by introducing a new modulus of continuity for functions belonging to bivariate logarithmic weighted spaces of continuous functions. Furthermore, in order to determine a rate of pointwise convergence, we estimate remainder of Mellin-Taylor formula thanks to the modulus of continuity and we present a quantitative Voronovskaja-type theorem. Finally, we give some graphical representation of approximation of continuous functions by EWϕf using kernels which satisfy certain assumptions.


This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 1001-Project 123F123. The authors thank to TUBITAK for their supports.


  1. (Communicated by Marcus Waurick)

References

[1] Acar, T.—Aral, A.—Rasa, I.: The new forms of Voronovskayas’ theorem in weighted spaces, Positivity 20(1) (2016), 25–40.10.1007/s11117-015-0338-4Suche in Google Scholar

[2] Acar, T.—Alagoz, O.—Aral, A.—Costarelli, D.—Turgay, M.—Vinti, G.: Convergence of generalized sampling series in weighted spaces, Demonstr. Math. 55(1) (2022), 153–162.10.1515/dema-2022-0014Suche in Google Scholar

[3] Acar, T.—Alagoz, O.—Aral, A.—Costarelli, D.—Turgay, M.—Vinti, G.: Approximation by sampling Kantorovich series in weighted space of functions, Turkish J. Math. 46(7) (2022), 2663–2676.10.55730/1300-0098.3293Suche in Google Scholar

[4] Acar, T.—Eke, A.—Kursun, S.: Bivariate generalized Kantorovich-type exponential sampling series, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM 118(1) (2024), Art. No. 35.10.1007/s13398-023-01535-2Suche in Google Scholar

[5] Acar, T.—Kursun, S.: Pointwise convergence of generalized Kantorovich exponential sampling series, Dolomites Res. Notes Approx. 16 (2023), 1–10.Suche in Google Scholar

[6] Acar, T.—Kursun, S.—Acar, O.: Approximation properties of exponential sampling series in logarithmic weighted spaces, Bull. Iranian Math. Soc. 50(3) (2024), Art. No. 36.10.1007/s41980-024-00868-xSuche in Google Scholar

[7] Acar, T.—Kursun, S.—Turgay, M.: Multidimensional Kantorovich modifications of exponential sampling series, Quaest. Math. 46(1) (2023), 57–72.10.2989/16073606.2021.1992033Suche in Google Scholar

[8] Acar, T.—Turgay, M.: Approximation by bivariate generalized sampling series in weighted spaces of functions, Dolomites Res. Notes Approx. 16 (2023), 11–22.10.32513/asetmj/1932200823307Suche in Google Scholar

[9] Alagoz, O.: Weighted approximations by sampling type operators: recent and new results, Constr. Math. Anal. 7(3) (2024), 114–125.10.33205/cma.1528004Suche in Google Scholar

[10] Alagoz, O.—Turgay, M.—Acar, T.—Parlak, M.: Approximation by sampling Durrmeyer operators in weighted space of functions, Numer. Funct. Anal. Optim. 43(10) (2022), 1223–1239.10.1080/01630563.2022.2096630Suche in Google Scholar

[11] Angamuthu, S. K.—Bajpeyi, S.: Direct and inverse results for Kantorovich type exponential sampling series, Results Math. 75 (2020), Art. No. 119.10.1007/s00025-020-01241-0Suche in Google Scholar

[12] Angamuthu, S. K.—Ponnanian, D.: Approximation by generalized bivariate Kantorovich sampling type series, J. Anal. 27 (2019), 429–449.10.1007/s41478-018-0085-6Suche in Google Scholar

[13] Angeloni, L.—Costarelli, D.—Vinti, G.: Convergence in variation for the multidimensional generalized sampling series and applications to smoothing for digital image processing, Ann. Fenn. Math. 45 (2020), 751–770.10.5186/aasfm.2020.4532Suche in Google Scholar

[14] Aral, A.: Weighted approximation: Korovkin and quantitative type theorems, Modern Math. Methods 1(1) (2023), 1–21.Suche in Google Scholar

[15] Aral, A.—Acar, T.—Kursun, S.: Generalized Kantorovich forms of exponential sampling series, Anal. Math. Phys. 12(2) (2022), Art. No. 50.10.1007/s13324-022-00667-9Suche in Google Scholar

[16] Bajpeyi, S.—Angamuthu, S. K.—Mantellini, I.: Approximation by Durrmeyer type exponential sampling operators, Numer. Funct. Anal. Optim. 43(1) (2022), 16–34.10.1080/01630563.2021.1980798Suche in Google Scholar

[17] Bardaro, C.—Bevignani, G.—Mantellini, I.—Seracini, M.: Bivariate generalized exponential sampling series and applications to seismic waves, Constr. Math. Anal. 2(4) (2019), 153–167.10.33205/cma.594066Suche in Google Scholar

[18] Bardaro, C.—Butzer, P. L.—Mantellini, I.: The exponential sampling theorem of signal analysis and the reproducing kernel formula in the Mellin transform setting, Sampl. Theory Signal Process. Data Anal. 13(1) (2014), 35–66.10.1007/BF03549572Suche in Google Scholar

[19] Bardaro, C.—Butzer, P. L.—Mantellini, I.—Schmeisser, G.: On the Paley-Wiener theorem in the Mellin transform setting, J. Approx. Theory 207 (2016), 60–75.10.1016/j.jat.2016.02.010Suche in Google Scholar

[20] Bardaro, C.—Butzer, P. L.—Mantellini, I.—Schmeiiser, G.: A fresh approach to the Paley-Wiener theorem for Mellin transforms and the Mellin-Hardy spaces, Math. Nachr. 290 (2017), 2759–2774.10.1002/mana.201700043Suche in Google Scholar

[21] Bardaro, C.—Butzer, P. L.—Stens, R. L.—Vinti, G.: Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals, J. Math. Anal. Appl. 316(1) (2006), 269–306.10.1016/j.jmaa.2005.04.042Suche in Google Scholar

[22] Bardaro, C.—Faina, L.—Mantellini, I.: A generalization of the exponential sampling series and its approximation properties, Math. Slovaca 67(6) (2017), 1481–1496.10.1515/ms-2017-0064Suche in Google Scholar

[23] Bardaro, C.—Mantellini, I.: On a Durrmeyer-type modification of the exponential sampling series, Rend. Circ. Mat. Palermo (2) 70 (2021), 1289–1304.10.1007/s12215-020-00559-6Suche in Google Scholar

[24] Bardaro, C.—Mantellini, I.—Schmeiiser, G.: Exponential sampling series: convergence in Mellin-Lebesgue spaces, Results Math. 74 (2019), Art. No. 119.10.1007/s00025-019-1044-5Suche in Google Scholar

[25] Bardaro, C.—Mantellini, I.—Stens, R.—Vautz, J.—Vinti, G.: Generalized sampling approximation for multivariate discontinuous signals and application to image processing. In: New Perspectives on Approximation and Sampling Theory, Festschrift in honor of P. Butzer’s 85th birthday, Birkhauser, 2014, 87–114.10.1007/978-3-319-08801-3_5Suche in Google Scholar

[26] Bertero, M.—Pike, E. R.: Exponential sampling method for Laplace and other dilationally invariant transforms: I. Singular system analysis, II. Examples in photon correction spectroscopy and Frauenhofer diffraction, Inverse Probl. 7(1) (1991), 1–20; 21–41.10.1088/0266-5611/7/1/004Suche in Google Scholar

[27] Boccali, L.—Costarelli, D.—Vinti, G.: A Jackson-type estimate in terms of the τ-modulus for neural network operators in Lp-spaces, Modern Math. Methods 2(2) (2024), 90–120.Suche in Google Scholar

[28] Butzer, P. L.—Engels, W.—Ries, S.—Stens, R. L.: The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines, SIAM J. Appl. Math. 46(2) (1986), 299–323.10.1137/0146020Suche in Google Scholar

[29] Butzer, P. L.—Ferreira, P. J. S. G.—Higgins, R. J.—Schmeisser, G.—Stens, R. L.: The sampling theorem, Poisson’s summation formula, general Parseval formula, reproducing kernel formula and the Paley-Wiener theorem for bandlimited signals-their interconnections, Appl. Anal. 90(3–4) (2011), 431–461.10.1080/00036811003627567Suche in Google Scholar

[30] Butzer, P. L.—Fischer, A.—Stens, R. L.: Generalized sampling approximation of multivariate signals; general theory, Atti Semin. Mat. Fis. Univ. Modena 41(1) (1993), 17–37.Suche in Google Scholar

[31] Butzer, P. L.—Jansche, S.: A direct approach to the Mellin transform, J. Fourier Anal. Appl. 3 (1997), 325–375.10.1007/BF02649101Suche in Google Scholar

[32] Butzer, P. L.—Jansche, S.: The exponential sampling theorem of signal analysis, Atti Sem. Mat. Fis. Univ. Modena, Suppl. 46 (1998), 99–122, (special issue dedicated to Professor Calogero Vinti).Suche in Google Scholar

[33] Butzer, P. L.—Schmeisser, G.—Stens, R. L.: An introduction to sampling analysis. In: Nonuniform Sampling, Theory and Practice (F. Marvasti, ed.), Kluwer, New York, 2001, pp. 17–121.10.1007/978-1-4615-1229-5_2Suche in Google Scholar

[34] Butzer, P. L.—Splettstosser, W.: A sampling theorem for duration-limited functions with error estimates, Inf. Control. 34(1) (1977), 55–65.10.1016/S0019-9958(77)90264-9Suche in Google Scholar

[35] Butzer, P. L.—Stens, R. L.: The sampling theorem and linear prediction in signal analysis, Jahresber. Dtsch. Math. Ver. 90(1) (1998), 1–70.Suche in Google Scholar

[36] Butzer, P. L.—Stens, R. L.: Linear prediction by samples from the past. In: Advanced topics in Shannon sampling and interpolation theory, New York, Springer, 1993, pp. 157–183.10.1007/978-1-4613-9757-1_5Suche in Google Scholar

[37] Casasent, D.: Optical signal Processing. In: Optical Data Processing: Applications (D. Casasent, ed.), Springer, Berlin, 1978, pp. 241–282.10.1007/BFb0057988Suche in Google Scholar

[38] Costarelli, D.—Sambucini, A. R.: A comparison among a fuzzy algorithm for image rescaling with other methods of digital image processing, Constr. Math. Anal. 7(2) (2024), 45–68.10.33205/cma.1467369Suche in Google Scholar

[39] Draganov, B. R.: A fast converging sampling operator, Constr. Math. Anal. 5(4) (2022), 190–201.10.33205/cma.1172005Suche in Google Scholar

[40] Gori, F.: Sampling in optics. In: Advanced Topics in Shannon Sampling and Interpolation Theory (R. J. Marks II, ed.), Springer, New York, 1993, pp. 37–83.10.1007/978-1-4613-9757-1_2Suche in Google Scholar

[41] Karsli, H. : Historical Backround of wavelets and orthonormal systems: Recent results on positive linear operators reconstructed via wavelets, Modern Math. Methods 2(3) (2024), 132–154.Suche in Google Scholar

[42] Kursun, S.—Acar, T.: Approximation of discontinuous signals by exponential-type generalized sampling Kantorovich series, Math. Methods Appl. Sci. 48(1) (2025), 340–355.10.1002/mma.10330Suche in Google Scholar

[43] Kursun, S.—Aral, A.—Acar, T.: Approximation results for Hadamard-Type exponential sampling Kan-torovich series, Mediterr. J. Math. 20(5) (2023), Art. No. 263.10.1007/s00009-023-02459-2Suche in Google Scholar

[44] Kursun, S.—Aral, A.—Acar, T.: Riemann-Liouville fractional integral type exponential sampling Kan-torovich series, Expert Syst. Appl. 238(F) (2024), Art. ID 122350.10.1016/j.eswa.2023.122350Suche in Google Scholar

[45] Kursun, S.—Turgay, M.—Alagoz, O.—Acar, T.: Approximation properties of multivariate exponential sampling series, Carpathian Math. Publ. 13(3) (2021), 666–675.10.15330/cmp.13.3.666-675Suche in Google Scholar

[46] Mamedov, R. G.: The Mellin Transform and Approximation Theory, “Elm”, Baku, 1991 (in Russian).Suche in Google Scholar

[47] Ostrowsky, N.—Sornette, D.—Parker, P.—Pike, E. R.: Exponential sampling method for light scattering polydispersity analysis, Opt. Acta 28 (1994), 1059–1070.10.1080/713820704Suche in Google Scholar

[48] Turgay, M.—Acar, T.: Approximation by modified generalized sampling series, Mediterr. J. Math. 21 (2024), Art. No. 107.10.1007/s00009-024-02653-wSuche in Google Scholar

Received: 2024-07-15
Accepted: 2025-02-04
Published Online: 2025-08-09
Published in Print: 2025-08-26

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0064/html
Button zum nach oben scrollen