Startseite Mathematik Approximation by matrix means of double Vilenkin-Fourier series
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Approximation by matrix means of double Vilenkin-Fourier series

  • István Blahota EMAIL logo und Károly Nagy
Veröffentlicht/Copyright: 6. Dezember 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present paper, we discuss the rate of the approximation by the matrix transform of partial sums of double Vilenkin-Fourier series in Lp( Gm2 ) space (1 ≤ p < ∞) and in C( Gm2 ). We give an application for Lipschitz functions.

MSC 2010: 42C10

Acknowledgement

The authors would also like to thank the anonymous reviewers for their valuable help in improving the article.

  1. Communicated by Tomasz Natkaniec

References

[1] Avdispahić, M.—Pepić, M.: Summability and integrability of Vilenkin series, Collect. Math. 51(3) (2000), 237–254.Suche in Google Scholar

[2] Agaev, G. H.—Vilenkin, N. Y.—Dzhafarli, G. M.—Rubinstein, A. I.: Multiplicative systems of functions and harmonic analysis on 0-dimensional groups, Izd. (“ELM”), Baku, (1981), (in Russian).Suche in Google Scholar

[3] Baramidze, L.—Persson, L.-E.—Tephnadze G.—Wall, P.: Sharp HpLp type inequalities of weighted maximal operators of Vilenkin-Nörlund means and its applications, J. Inequal. Appl. 2016 (2016), Art. No. 242.10.1186/s13660-016-1182-1Suche in Google Scholar

[4] Blahota, I.: Approximation by matrix transform means with respect to the character system of the group of 2-adic integers of Walsh-Fourier series, Georgian Math. J. 30(2) (2023), 185–193.10.1515/gmj-2022-2215Suche in Google Scholar

[5] Blahota, I.: Approximation by subsequences of matrix transform means of Walsh-Fourier series, Real Anal. Exchange 48(1) (2023), 107–118.10.14321/realanalexch.48.1.1654398223Suche in Google Scholar

[6] Blahota, I.—Gát, G.: On the rate of approximation by generalized de la Vallée Poussin type matrix transform means of Walsh-Fourier series, P-Adic Numbers Ultrametric Anal. Appl. 14 (2022), S59–S73.10.1134/S2070046622050053Suche in Google Scholar

[7] Blahota, I.—Nagy, K.: Approximation by Θ-means of Walsh-Fourier series, Anal. Math. 44(1) (2018), 57–71.10.1007/s10476-018-0106-3Suche in Google Scholar

[8] Blahota, I.—Nagy, K.: Approximation by matrix transform of Vilenkin-Fourier series, Publ. Math. Debrecen 99(1–2) (2021), 223–242.10.5486/PMD.2021.9001Suche in Google Scholar

[9] Blahota, I.—Nagy, K.: Approximation by Marcinkiewicz-type matrix transform of Vilenkin-Fourier series, Mediterr. J. Math. 19 (2022), Art. No. 165.10.1007/s00009-022-02105-3Suche in Google Scholar

[10] Blahota, I.—Nagy, K.—Salim, M.: Approximation by Θ-means of Walsh-Fourier series in dyadic Hardy spaces and dyadic homogeneous Banach spaces, Anal. Math. 47(2) (2021), 285–309.10.1007/s10476-021-0083-9Suche in Google Scholar

[11] Blahota, I.—Nagy, K.—Tephnadze, G.: Approximation by Marcinkiewicz Θ-means of double Walsh-Fourier series, Math. Inequal. Appl. 22(3) (2019), 837–853.10.7153/mia-2019-22-58Suche in Google Scholar

[12] Blahota, I.—Tephnadze, G.: A note on maximal operators of Vilenkin-Nörlund means, Acta Math. Acad. Paedag. Nyíregyh. 32(2) (2016), 203–213.Suche in Google Scholar

[13] Blyumin, S. L.: Linear summability methods for Fourier series in multiplicative systems, Sibirsk. Mat. Zh. 9(2) (1968), 449–455.10.1007/BF02204797Suche in Google Scholar

[14] Chandra, P.: On the degree of approximation of a class of functions by means of Fourier series, Acta Math. Hungar. 52 (1988), 199–205.10.1007/BF01951564Suche in Google Scholar

[15] Chripkó, Á.: Weighted approximation via Θ-summations of Fourier-Jacobi series, Studia Sci. Math. Hungar. 47(2) (2010), 139–154.10.1556/sscmath.2009.1121Suche in Google Scholar

[16] Eisner, T.: The Θ-summation on local fields, Ann. Univ. Sci. Budapest. Sect. Comput. 33 (2011), 137–160.Suche in Google Scholar

[17] Fridli, S.—Manchanda, P.—Siddiqi, A. H.: Approximation by Walsh-Nörlund means, Acta Sci. Math. 74 (2008), 593–608.Suche in Google Scholar

[18] Goginava, U.: On the approximation properties of Cesàro means of negative order of Walsh-Fourier series, J. Approx. Theory 115 (2002), 9–20.10.1006/jath.2001.3632Suche in Google Scholar

[19] Goginava, U.: Cesàro means of double Walsh-Fourier series, Anal. Math. 30 (2004), 289–304.10.1007/s10476-005-0516-xSuche in Google Scholar

[20] Goginava, U.—Nagy, K.: Matrix summability of Walsh-Fourier series, Mathematics 10(14) (2022), Art. No. 2458.10.3390/math10142458Suche in Google Scholar

[21] Iofina, T. V.—Volosivets, S. S.: On the degree of approximation by means of Fourier-Vilenkin series in Hölder and Lp norm, East J. Approx. 15(2) (2009), 143–158.Suche in Google Scholar

[22] Jastrebova, M. A.: On approximation of functions satisfying the Lipschitz condition by arithmetic means of their Walsh-Fourier series, Mat. Sb. 71 (1966), 214–226 (in Russian).Suche in Google Scholar

[23] Leindler, L.:, On the degree of approximation of continuous functions, Acta Math. Hungar. 104 (2004), 105–113.10.1023/B:AMHU.0000034365.58203.c7Suche in Google Scholar

[24] Memić, N.—Persson, L.-E.—Tephnadze, G.: A note on the maximal operators of Vilenkin-Nörlund means with non-increasing coefficients, Studia Sci. Math. Hungar. 53(4) (2016), 545–556.10.1556/012.2016.53.4.1342Suche in Google Scholar

[25] Móricz, F.: Approximation by double Walsh polynomials, Int. J. Math. Math. Sci. 15 (1992), 209–220.10.1155/S0161171292000279Suche in Google Scholar

[26] Móricz, F.—Rhoades, B. E.: Approximation by weighted means of Walsh-Fourier series, Int. J. Math. Math. Sci. 19(1) (1996), 1–8.10.1155/S0161171296000014Suche in Google Scholar

[27] Móricz, F.—Siddiqi, A.: Approximation by Nörlund means of Walsh-Fourier series, J. Approx. Theory 70 (1992), 375–389.10.1016/0021-9045(92)90067-XSuche in Google Scholar

[28] Nagy, K.: Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series, Anal. Math. 36(4) (2010), 299–319.10.1007/s10476-010-0404-xSuche in Google Scholar

[29] Nagy, K.: Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions, Math. Ineq. Appl. 15(2) (2012), 301–322.10.7153/mia-15-25Suche in Google Scholar

[30] Nagy, K.: Approximation by weighted means of cubical partial sums of double Walsh-Fourier series, Jaen J. Approx. 2(2) (2010), 147–161.Suche in Google Scholar

[31] Pál, J.—Simon, P.: On a generalization of the concept of derivative, Acta Math. Hungar. 29 (1977), 155–164.10.1007/BF01896477Suche in Google Scholar

[32] Persson, L.-E.—Tephnadze, G.—Weisz, F.: Martingale Hardy Spaces and Summability of One-Dimensional Vilenkin-Fourier Series, Birkhäuser/Springer, 2022.10.1007/978-3-031-14459-2Suche in Google Scholar

[33] Schipp, F.—Wade, W. R.—Simon, P.—Pál, J.: Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol-New York, 1990.Suche in Google Scholar

[34] Skvortsov, V. A.: Certain estimates of approximation of functions by Cesàro means of Walsh-Fourier series, Mat. Zametki 29 (1981), 539–547 (in Russian).10.1007/BF01343535Suche in Google Scholar

[35] Tepnadze, T.: On the approximation properties of Cesàro means of negative order of Vilenkin-Fourier series, Studia Sci. Math. Hungar. 53(4) (2016), 532–544.10.1556/012.2016.53.4.1350Suche in Google Scholar

[36] Tepnadze, T.: On the approximation properties of Cesàro means of negative order of double Vilenkin-Fourier series, Ukrainian Math. J. 72(3) (2020), 464–484.10.1007/s11253-020-01792-zSuche in Google Scholar

[37] Vilenkin, N. Y.: On a class of complete orthonormal systems, Izvestiya Akademii Nauk SSSR, Seriya Matematicheskaya 11 (1957), 363–400 (in Russian).Suche in Google Scholar

[38] Weisz, F.: Θ-summability of Fourier series, Acta Math. Hungar. 103(1–2) (2004), 139–175.10.1023/B:AMHU.0000028241.87331.c5Suche in Google Scholar

[39] Weisz, F.: Θ-summation and Hardy spaces, J. Approx. Theory 107 (2000), 121–142.10.1006/jath.2000.3505Suche in Google Scholar

[40] Weisz, F.: Several dimensional Θ-summability and Hardy spaces, Math. Nachr. 230 (2001), 159–180.10.1002/1522-2616(200110)230:1<159::AID-MANA159>3.0.CO;2-LSuche in Google Scholar

[41] Weisz, F.: The maximal (C, α, β) operator of two-parameter Walsh-Fourier series, J. Fourier Anal. Appl. 6(4) (2000), 389–401.10.1007/BF02510145Suche in Google Scholar

[42] Yano, Sh.: On approximation by Walsh functions, Proc. Amer. Math. Soc. 2 (1951), 962–967.10.1090/S0002-9939-1951-0045235-4Suche in Google Scholar

[43] Zygmund, A.: Trigonometric Series, 3rd edition, Vol. 1 & 2 and combined, Cambridge Univ. Press, 2015.Suche in Google Scholar

Received: 2024-03-04
Accepted: 2024-07-13
Published Online: 2024-12-06
Published in Print: 2024-12-15

© 2024 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0110/html
Button zum nach oben scrollen