Home Mathematics Existence and Uniqueness of Solutions for Fractional Dynamic Equations with Impulse Effects
Article
Licensed
Unlicensed Requires Authentication

Existence and Uniqueness of Solutions for Fractional Dynamic Equations with Impulse Effects

  • Svetlin G. Georgiev and Sibel Doğru Akgöl EMAIL logo
Published/Copyright: December 6, 2024
Become an author with De Gruyter Brill

Abstract

The aim of the study is to establish sufficient conditions to ensure the existence and uniqueness of solutions for nonlinear Riemann-Liouville fractional dynamic equations under impulse effects. The current state of the literature reveals a visible gap in the investigation of the existence-uniqueness aspects of such equations, and this research makes a significant contribution to filling this gap. To highlight the practical implications of our results, we present an illustrative example that exemplifies the applicability of the established conditions.

  1. Communicated by Jozef Džurina

References

[1] Agarwal, R. P.—Bohner, M.: Basic calculus on time scales and some of its applications, Results Math. 35(1) 1999, 3–22.10.1007/BF03322019Search in Google Scholar

[2] Bainov, D.—Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications, CRC Press, 1993.Search in Google Scholar

[3] Bainov, D.—Simeonov, P.: Systems with Impulse Effect: Stability, Theory, and Applications, Ellis Horwood, 1989.Search in Google Scholar

[4] Bohner, M.—Peterson, A.: Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.10.1007/978-0-8176-8230-9Search in Google Scholar

[5] Bohner, M.—Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Basel, 2001.10.1007/978-1-4612-0201-1Search in Google Scholar

[6] Bohner, M.—Georgiev, S. G.: Multivariable Dynamic Calculus on Time Scales, Springer, Switzerland, 2016.10.1007/978-3-319-47620-9Search in Google Scholar

[7] Danca, M. F.—Fečkan, M.—Chen, G.: Impulsive stabilization of chaos in fractional-order systems, Nonlinear Dynam. 89 (2017), 1889–1903.10.1007/s11071-017-3559-1Search in Google Scholar

[8] Erhan, I. M.—Georgiev, S. G.: Nonlinear Integral Equations on Time Scales, Nova Science Publishers, 2019.10.1007/978-3-030-15420-2Search in Google Scholar

[9] Georgiev, S. G.: Fractional Dynamic Calculus and Fractional Dynamic Equations on Time Scales, Springer, 2018.10.1007/978-3-319-73954-0Search in Google Scholar

[10] Gogoi, B.—Saha, U. K.—Hazarika, B.: Impulsive fractional dynamic equation with non-local initial condition on time scales, Bol. Soc. Parana. Mat. 42 (2024), 1–13.10.5269/bspm.65039Search in Google Scholar

[11] Heymans, N.—Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives, Rheol. Acta 45(5) (2005), 765–771.10.1007/s00397-005-0043-5Search in Google Scholar

[12] Hilger, S.: Ein Maβkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität Würzburg, 1988.Search in Google Scholar

[13] Hilger, S.: Analysis on measure chains – A unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18–56.10.1007/BF03323153Search in Google Scholar

[14] Kayar, Z.: An existence and uniqueness result for linear fractional impulsive boundary value problems as an application of Lyapunov type inequality, Hacet. J. Math. Stat. 47(2) (2018), 287–297.Search in Google Scholar

[15] Kaymakçalan, B.—Lakshmikantham, V.—Sivasundaram, S.: Dynamic Systems on Measure Chains, Dordrecht, Kluwer, 1996.10.1007/978-1-4757-2449-3Search in Google Scholar

[16] Kilbas, A. A.—Srivastava, H. M.—Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204, Elsevier Science B. V., Amsterdam, 2006.Search in Google Scholar

[17] Kumar, V.—Malik, M.: Existence, uniqueness and stability of nonlinear implicit fractional dynamical equation with impulsive condition on time scales, Nonautonomous Dyn. Syst. 6 (2019), 65–80.10.1515/msds-2019-0005Search in Google Scholar

[18] Lakshmikantham, V.—Simeonov, P.: Theory of Impulsive Differential Equations, Vol. 6, World Scientific, 1989.10.1142/0906Search in Google Scholar

[19] Li, K.—Peng, J.—Jia, J.: Cauchy problems for fractional differential equations with RiemannLiouville fractional derivatives, J. Funct. Anal. 263(2) (2012), 476–510.10.1016/j.jfa.2012.04.011Search in Google Scholar

[20] Lyons, J. W.—Neugebauer, J. T.: Existence of a positive solution for a singular fractional boundary value problem with fractional boundary conditions using convolution and lower order problems, Turkish J. Math. 45(1) (2021), 125–138.10.3906/mat-2008-61Search in Google Scholar

[21] Miller, K. S.—Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.Search in Google Scholar

[22] Podlubny, I.: Fractional Differential Equations, Math. Sci. Eng., Vol. 198, Academic Press, Inc., San Diego, CA, 1999.Search in Google Scholar

[23] Sabatier, J.—Agrawal, O. P.—Tenreiro Machado, J. A.: Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.10.1007/978-1-4020-6042-7Search in Google Scholar

Received: 2024-01-19
Accepted: 2024-09-12
Published Online: 2024-12-06
Published in Print: 2024-12-15

© 2024 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0107/html
Scroll to top button