Home Mathematics The Marshall-Olkin Extended Gamma Lindley distribution: Properties, characterization and inference
Article
Licensed
Unlicensed Requires Authentication

The Marshall-Olkin Extended Gamma Lindley distribution: Properties, characterization and inference

  • Mariem Ammar EMAIL logo , Imen Boutouria and Afif Masmoudi
Published/Copyright: December 6, 2024
Become an author with De Gruyter Brill

Abstract

In this research paper, we introduce a new three-parameter model called Marshall-Olkin Extended Gamma Lindley, which provides greater flexibility for modeling lifetime data. We investigate some of its structural properties, including moments and moment generating function. Furthermore, we prove that this model is identifiable. We corroborate that the Marshall-Olkin Extended Gamma Lindley distribution is characterized by its truncated moments of order statistics. Relying on this characterization and the least squares, we set forward a new method in order to estimate the unknown parameters of the proposed model. A comparative study is conducted between this approach and different classical methods of estimation. A real data set is applied to show the flexibility of the suggested model against other models.

MSC 2010: 62E10; 62F10; 62G30

References

[1] Arnold, B. C.—Balakrishnan, N.—Nagaraja, H. N.: A First Course in Order Statistics, New York, John Wiley & Sons.Search in Google Scholar

[2] Bdair, O. M.: Different methods of estimation for Marshall-Olkin exponential distribution, J. Appl. Stat. Sci. 19(2) (2012), 13–29.Search in Google Scholar

[3] Benkhelifa, L.: The Marshal-Olkin extended generalized Lindley distribution: Properties and applications, Comm. Stat. Simul. Comput. 46(10) (2017), 8306–8330.10.1080/03610918.2016.1277747Search in Google Scholar

[4] Cheng, R.—Amin, N.: Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Stat. Soc. Ser. B. Stat. Methodol. 45(3) (1983), 394–403.10.1111/j.2517-6161.1983.tb01268.xSearch in Google Scholar

[5] Cordeiro, G. M.—Lemonte, A. J.: On the Marshall-Olkin extended weibull distribution, Statist. Papers 54(2) (2013), 333–353.10.1007/s00362-012-0431-8Search in Google Scholar

[6] Do Espirito Santo, A. P. J.—Mazucheli, J.: Comparaison of estimation methods for the Marshall-Olkin extended Lindley distribution, J. Stat. Comput. Simul. 85(17) (2015), 3437–3450.10.1080/00949655.2014.977904Search in Google Scholar

[7] Ghitany, M. E.—Al-Mutairi, D. K.—Al-Awadhi, F. A.—AL-Burais, M. M.: Marshall-Olkin extended Lindley distribution and its application, Int. J. Appl. Math. 25(5) (2012), 709–721.Search in Google Scholar

[8] Jose, K. K.—Joseph, A.—Ristić, M. M.: A Marshall-Olkin beta distribution and its application, J. Probab. Stat. Sci. 7(2) (2009), 173–186.Search in Google Scholar

[9] Kilany, N. M.: Characterization of Lindley distribution based on truncated moments of order statistics, J. Stat. Appl. Probab. 6(2) (2017), 355–360.10.18576/jsap/060210Search in Google Scholar

[10] Laribi, D.—Masmoudi, A.—Boutouria, D.: Characterization of generalized Gamma-Lindley distrubution using truncated moments of order statistics, Math. Slovaca 71(2) (2021), 455–474.10.1515/ms-2017-0481Search in Google Scholar

[11] Lindley, D. V.: Fiducial distributions and Bayes' theorem, J. R. Stat. Soc. Ser. B Stat. Methodol. 20 (1958), 102–107.10.1111/j.2517-6161.1958.tb00278.xSearch in Google Scholar

[12] LuceÑO, A.: Fitting the generalized Pareto distribution to data using maximum goodness of fit estimators, Comput. Statist. Data Anal. 51(2) (2006), 904–917.10.1016/j.csda.2005.09.011Search in Google Scholar

[13] LuceÑO, A.: Maximum likelihood vs maximum goodness of fit estimation of the three-parameter Weibull distribution, J. Stat. Comput. Simul. 78(10) (2008), 941–949.10.1080/00949650701467363Search in Google Scholar

[14] Mansoor, M.—Tahir, M. H.—Cordeiro, G. M.—Provost, S. B.—Alzaatreh, A.: The Marshall-Olkin logistic-exponential distribution, Comm. Statist. Theory Methods 48(2) (2018), 220–234.10.1080/03610926.2017.1414254Search in Google Scholar

[15] Marshall, A. W.—Olkin, I.: A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84(3) (1997), 641–652.10.1093/biomet/84.3.641Search in Google Scholar

[16] Masmoudi, A.—Laribi, D.—Boutouria, D.: An extended Gamma-Lindley model and inference for the prediction of Covid-19 in Tunisia, Math. Slovaca 73(4) (2023), 1055–1074.10.1515/ms-2023-0078Search in Google Scholar

[17] Mazucheli, J.—Ghitany, M. E.—Louzda, F.: Comparaison of ten estimation methods for the parameters of Marshall-Olkin extended exponential distribution, Comm. Stat. Simul. Comput. 46(7) (2017), 5627–5645.10.1080/03610918.2016.1171345Search in Google Scholar

[18] Nanda, A. K.: Characterization of distributions through failure rate and mean residual life functions, Statist. Probab. Lett. 80(9–10) (2010), 752–755.10.1016/j.spl.2010.01.006Search in Google Scholar

[19] Su, J. C.—Huang, W. J.: Characterizations based on conditional expectations, Statist. Papers 41(4) (2000), 423–435.10.1007/BF02925761Search in Google Scholar

[20] Swain, J. J.—Venkatraman, S.—Wilson, J. R.: Least-squares estimation of distribution functions in Johnson's translation system, J. Stat. Comput. Simul. 29(4) (1988), 271–297.10.1080/00949658808811068Search in Google Scholar

[21] Zeghdoudi, H.—Nedjar, S.: Gamma Lindley distribution and its application, J. Appl. Probab. Stat. 11(1) (2016), 129–138.10.16929/as/2016.923.83Search in Google Scholar

Received: 2024-01-27
Accepted: 2024-06-03
Published Online: 2024-12-06
Published in Print: 2024-12-15

© 2024 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0115/html
Scroll to top button