Startseite Mathematik Modeling Bivariate Data Using Linear Exponential and Weibull Distributions as Marginals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Modeling Bivariate Data Using Linear Exponential and Weibull Distributions as Marginals

  • Mohd Arshad , Ashok Kumar Pathak EMAIL logo , Qazi J. Azhad und Mukti Khetan
Veröffentlicht/Copyright: 4. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

Modeling bivariate data with different marginals is an important problem and have numerous applications in diverse disciplines. This paper introduces a new family of bivariate generalized linear exponential Weibull distribution having generalized linear and exponentiated Weibull distributions as marginals. Some important quantities like conditional distributions, conditional moments, product moments and bivariate quantile functions are derived. Concepts of reliability and measures of dependence are also discussed. The methods of maximum likelihood and Bayesian estimation are considered to estimate model parameters. Monte Carlo simulation experiments are performed to demonstrate the performance of the estimators. Finally, a real data application is also discussed to demonstrate the usefulness of the proposed distribution in real-life situations.

2020 Mathematics Subject Classification: Primary: 62E15, 62H05; Secondary: 62N05, 62H20

(Communicated by Gejza Wimmer)


Acknowledgement

The authors are thankful to the editor and anonymous referees for their constructive and helpful comments which have significantly improved the article. The first author would like to thank DST FIST Project (File No.: SR/FST/MS I/2018/26) for providing financial support.

REFERENCES

[1] ALMALKI, S. J.: A reduced new modified Weibull distribution, Comm. Statist. Theory Methods 47 (2018), 2297-2313.10.1080/03610926.2013.857416Suche in Google Scholar

[2] ALQALLAF, F. A.—KUNDU, D.: A bivariate inverse generalized exponential distribution and its applications in dependent competing risks model, Comm. Statist. Simulation Comput. 51(12), 7019–7036.10.1080/03610918.2020.1821888Suche in Google Scholar

[3] ARNOLD, B. C.—ARVANITIS, M. A.: On bivariate pseudo-exponential distributions, J. Appl. Stat. 47 (2020), 2299-2311.10.1080/02664763.2019.1686132Suche in Google Scholar PubMed PubMed Central

[4] BAHMAN, T.—MOHAMMAD, A.: A new extension of Chen distribution with applications to lifetime data, Commun. Math. Stat. 9 (2021), 23-38.10.1007/s40304-019-00185-4Suche in Google Scholar

[5] BALAKRISHNAN, N.—LAI, C. D.: Continuous Bivariate Distributions, 2nd ed., Springer, New York, 2009.10.1007/b101765_6Suche in Google Scholar

[6] BASU, A. P.: Bivariate failure rate, J. Amer. Statist. Assoc. 66 (1971), 103-104.10.1080/01621459.1971.10482228Suche in Google Scholar

[7] DOLATI, A.—AMINI, M.—MIRHOSSEINI, S. M.: Dependence properties of bivariate distributions with pro¬portional (reversed) hazards marginals, Metrika 77 (2014), 333–347.10.1007/s00184-013-0440-1Suche in Google Scholar

[8] FREUND, J. E.: A bivariate extension of the exponential distribution, J. Amer. Statist. Assoc. 56 (1961), 971-977.10.1080/01621459.1961.10482138Suche in Google Scholar

[9] FURMAN, E.—SU, J.—ZITIKIS, R.: Paths and indices of maximal tail dependence, Astin Bull. 45 (2015), 661-678.10.1017/asb.2015.10Suche in Google Scholar

[10] GELMAN, A.—CARLIN, J. B.—STERN, H. S.—DUNSON, D. B.—VEHTARI, A.—RUBIN, D. B.: Bayesian Data Analysis, Chapman and Hall/CRC, 2013.10.1201/b16018Suche in Google Scholar

[11] GONGSIN, I. E.—SAPORU, F. W. O.: A bivariate conditional Weibull distribution with application, Afr. Mat. 31 (2020), 565-583.10.1007/s13370-019-00742-8Suche in Google Scholar

[12] HOLLAND, P. W.—WANG, Y. J.: Dependence function for continuous bivariate densities, Comm. Statist. Theory Methods 16 (1987), 863-876.10.1080/03610928708829408Suche in Google Scholar

[13] JOHNSON, N. L.—KOTZ, S.: A vector valued multivariate hazard rate, J. Multivariate Anal. 5 (1975), 53-66.10.1016/0047-259X(75)90055-XSuche in Google Scholar

[14] KAZEMI, M. R.—JAFARI, A. A.—TAHMASEBI, S.: An extension of the generalized linear failure rate distribution, Comm. Statist. Theory Methods 46 (2017), 7916–7933.10.1080/03610926.2016.1167905Suche in Google Scholar

[15] KOZUBOWSKI, T. J.—PODGÓRSKI, K.: Certain bivariate distributions and random processes connected with maxima and minima, Extremes 21 (2018), 315–342.10.1007/s10687-018-0311-2Suche in Google Scholar

[16] KUNDU, D.—GUPTA, R. D.: Absolute continuous bivariate generalized exponential distribution, AStA. Adv. Stat. Anal. 95 (2011), 169–185.10.1007/s10182-010-0151-0Suche in Google Scholar

[17] MAHMOUD, M. A.—ALAM, F. M. A.: The generalized linear exponential distribution, Statist. Probab. Lett. 80 (2010), 1005–1014.10.1016/j.spl.2010.02.015Suche in Google Scholar

[18] MARSHALL, A. W.—OLKIN, I.: A generalized bivariate exponential distribution, J. Appl. Probab. 4 (1967), 291–302.10.1017/S0021900200032058Suche in Google Scholar

[19] MEINTANIS, S. G.: Test of fit for Marshall-Olkin distributions with applications, J. Statist. Plann. Inference 137 (2007), 3954–3963.10.1016/j.jspi.2007.04.013Suche in Google Scholar

[20] MIRHOSSEINI, S. M.—AMINI, M.—DOLATI, A.: On a new absolutely continuous bivariate generalized exponential distribution, Stat. Methods Appl. 24 (2015), 61–83.10.1007/s10260-014-0276-5Suche in Google Scholar

[21] MOHSIN, M.—KAZIANKA, H.—PILZ, J.—GEBHARDT, A.: A new bivariate exponential distribution for modeling moderately negative dependence, Stat. Methods Appl. 23 (2014), 123–148.10.1007/s10260-013-0246-3Suche in Google Scholar

[22] MUDHOLKAR, G. S.—SRIVASTAVA, D. K.: Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab. 42 (1993), 299–302.10.1109/24.229504Suche in Google Scholar

[23] NAJARZADEGAN, H.—ALAMATSAZ, M. H.—KAZEMI, I.: Discrete bivariate distributions generated by copulas: DBEEW distribution, J. Stat. Theory Pract. 13 (2019), Art. No. 47.10.1007/s42519-019-0046-7Suche in Google Scholar

[24] NEKOUKHOU, V.—KHALIFEH, A.—BIDRAM, H.: Univariate and bivariate extensions of the generalized exponential distributions, Math. Slovaca 71 (2021), 1581–1598.10.1515/ms-2021-0073Suche in Google Scholar

[25] NELSEN, R. B.: An Introduction to Copulas, 2nd ed., Springer, New York, 2006.Suche in Google Scholar

[26] OLIVEIRA, R. P.—ACHCAR, J. A.—MAZUCHELI, J.—BERTOLI, W.: A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties, Reliab. Eng. Syst. Saf. 211 (2021), Art. ID 107528.10.1016/j.ress.2021.107528Suche in Google Scholar

[27] PARK, S.—PARK, J.: A general class of flexible Weibull distributions, Comm. Statist. Theory Methods 73 (2018), 767–778.10.1080/03610926.2015.1118509Suche in Google Scholar

[28] PATHAK, A. K.—VELLAISAMY, P.: Various measures of dependence of a new asymmetric generalized Farlie-Gumbel-Morgenstern copulas, Comm. Statist. Theory Methods 45 (2016a), 5299–5317.10.1080/03610926.2014.942428Suche in Google Scholar

[29] PATHAK, A. K.—VELLAISAMY, P.: A note on generalized Farlie-Gumbel-Morgenstern copulas, J. Stat. Theory Pract. 10 (2016b), 40–58.10.1080/15598608.2015.1064838Suche in Google Scholar

[30] PATHAK, A. K.—VELLAISAMY, P.: A bivariate generalized linear exponential distribution: properties and estimation, Comm. Statist. Simulation Comput. 51 (2022), 5426–5446.10.1080/03610918.2020.1771591Suche in Google Scholar

[31] PATHAK, A. K.—ARSHAD, M.—AZHAD Q. J.—KHETAN, M.: A novel bivariate generalized Weibull distribution with properties and applications, Am. J. Math. Manag. Sci. (2022), to appear.10.1080/01966324.2023.2239963Suche in Google Scholar

[32] POPOVIĆ, B. V.—GENCÇ, A. İ.—DOMMA, F.: Copula-based properties of the bivariate Dagum distribution, Comput. Appl. Math. 37 (2018), 6230–6251.10.1007/s40314-018-0682-7Suche in Google Scholar

[33] R CORE TEAM: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2020.Suche in Google Scholar

[34] SABOOR, A.—BAKOUCH, H. S.—MOALA, F. A.—HUSSAIN, S.: Properties and methods of estimation for a bivariate exponentiated Fréchet distribution, Math. Slovaca 70 (2020), 1211–1230.10.1515/ms-2017-0426Suche in Google Scholar

[35] SAMANTHI, R. G.—SEPANSKI, J.: A bivariate extension of the beta generated distribution derived from copulas, Comm. Statist. Theory Methods 48 (2019), 1043–1059.10.1080/03610926.2018.1429626Suche in Google Scholar

[36] SARHAN, A. M.—AHMAD, A. E. A.—ALASBAHI, I. A.: Exponentiated generalized linear exponential distribution, Appl. Math. Model. 37 (2013), 2838–2849.10.1016/j.apm.2012.06.019Suche in Google Scholar

[37] SARHAN, A. M.—KUNDU, D.: Generalized linear failure rate distribution, Comm. Statist. Theory Methods 38 (2009), 642–660.10.1080/03610920802272414Suche in Google Scholar

[38] SKLAR, A.: Fonctions de répartition à n dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231.Suche in Google Scholar

[39] VINESHKUMAR, B.—NAIR, N. U.: Bivariate quantile functions and their applications to reliability modelling, Statistica 79 (2019), 3–21.Suche in Google Scholar

[40] XIE, M.—TANG, Y.—GOH, T. N.: A modified Weibull extension with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf. 73 (2002), 279–285.10.1016/S0951-8320(02)00022-4Suche in Google Scholar

Received: 2021-12-25
Accepted: 2022-10-06
Published Online: 2023-08-04

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0079/pdf
Button zum nach oben scrollen