Home A Study of the Higher-Order Schwarzian Derivatives of Hirotaka Tamanoi
Article
Licensed
Unlicensed Requires Authentication

A Study of the Higher-Order Schwarzian Derivatives of Hirotaka Tamanoi

  • Zhenyong Hu EMAIL logo , Jinhua Fan , Xiaoyuan Wang and H. M. Srivastava
Published/Copyright: August 4, 2023
Become an author with De Gruyter Brill

ABSTRACT

In this paper, we study the higher-order Schwarzian derivative Sn (f) proposed by H. Tamanoi [Higher Schwarzian operators and combinatorics of the Schwarzian derivative, Math. Ann. 305 (1996), 127–151]. For the strongly starlike functions of order α and strongly convex functions of order α, the sharp bound of |S 3(f)(0)| is obtained. When n ∈ [2, 7], we prove that the higher Bers maps induced by Sn (f) on Weil-Petersson Teichmüller space and BMO-Teichmüller space are holomorphic.

2020 Mathematics Subject Classification: Primary 30C45; 30C62; 30F60

(Communicated by Tomasz Natkaniec)


Acknowledgement

The authors would like to thank two anonymous reviewers for providing insightful comments and reading the manuscript carefully. This work is supported by the Fundamental Research Funds for the Central University (No. 30922010804), the Science and Technology Planning Project of Pingxiang City (No. 2020C0102) and the Key Laboratory of Jiangxi Province for Numerical Simulation and Emulation Technique Open Project (21zb03).

REFERENCES

[1] ALLU, V.—THOMAS, D. K.—TUNESKI, N.: On Ozaki close-to-convex functions, Bull. Aust. Math. Soc. 99 (2019), 89–100.10.1017/S0004972718000989Search in Google Scholar

[2] AULASKARI, R.—NOWAK, M.—RÄTTYÄ, J.: The n-th derivative characterization of Möbius invariant Dirichlet space, Bull. Aust. Math. Soc. 58 (1998), 43–56.10.1017/S0004972700031993Search in Google Scholar

[3] BERS, L.: On Moduli of Riemann Surfaces, Lectures at Forschungsinstitut fur Mathematik (ETH, Zurich, 1964) (mimeographed).Search in Google Scholar

[4] BERS, L.: Automorphic forms and general Teichmüller spaces, Proceedings of the Conference on Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 109–113.10.1007/978-3-642-48016-4_11Search in Google Scholar

[5] BERTILSSON, D.: Coefficient estimates for negative powers of the derivative of univalent functions, Ark. Mat. 36 (1998), 255–273.10.1007/BF02384769Search in Google Scholar

[6] BUSS, G.: Higher Bers maps, Asian J. Math. 16 (2012), 103–140.10.4310/AJM.2012.v16.n1.a4Search in Google Scholar

[7] BRANNAN, D.—KIRWAN, W.: On some classes of bounded univalent functions, J. London Math. Soc. 1 (1969), 431–443.10.1112/jlms/s2-1.1.431Search in Google Scholar

[8] CHO, N. E.—KOWALCZYK, B.—KWON, O. S.—LECKO A.—SIM, Y. J.: Some coefficient inequalities related to the hankel determinant for strongly starlike functions of order alpha, J. Math. Ineq. 1 (2017), 429–439.10.7153/jmi-11-36Search in Google Scholar

[9] CHO, N. E.—KUMAR V.—RAVICHANDRAN, V.: Sharp bounds on the higher-order Schwarzian derivatives for Janowski classes, Symmetry 10 (2018), Art. No. 348.10.3390/sym10080348Search in Google Scholar

[10] CUI, G.: Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China Ser. A. 43 (2000), 267–279.10.1007/BF02897849Search in Google Scholar

[11] DORFF, M—SZUNAL, J.: Higher-order Schwarzian derivatives of univalent functions, Trans. Petrozavodsk. Gos. Univ. Ser. Math. 15 (2009), 7–11.Search in Google Scholar

[12] DUREN, P. L.: Univalent Functions, Springer-Verlag, New York Inc., 1983.Search in Google Scholar

[13] FAIT, M.—KRZYŻ, J. G.—ZYGMUNT, J.: Explicit quasiconformal extensions for some classes of univalent functions, Comment. Math. Helv. 51 (1976), 279–285.10.1007/BF02568157Search in Google Scholar

[14] HARMELIN, R.: Aharonov invariants and univalent functions, Israel J. Math. 43 (1982), 244–254.10.1007/BF02761945Search in Google Scholar

[15] HU, Z. Y.—WANG X. Y.—FAN, J. H.: Estimate for Schwarzian derivative of certain close-to-convex functions, AIMS Mathematics 6 (2021), 10778–10788.10.3934/math.2021626Search in Google Scholar

[16] KANAS, S.—SUGAWA, T.: Sharp norm estimate of Schwarzian derivative for a class of convex functions, Ann. Pol. Math. 101 (2011), 75–86.10.4064/ap101-1-8Search in Google Scholar

[17] KIM, S. A.—SUGAWA, T.: Invariant Schwarzian derivatives of higher-order, Complex Anal. Oper. Theory 5 (2011), 659–670.10.1007/s11785-010-0081-6Search in Google Scholar

[18] KUMAR, V.—CHO, N. E.—RAVICHANDRAN, V.—SRIVASTAVA, H. M.: Sharp coefficient bounds for star-like functions associated with the Bell numbers, Math. Slovaca 69 (2019), 1053–1064.10.1515/ms-2017-0289Search in Google Scholar

[19] KUMAR, V.—KUMAR, S.: Bounds on Hermitian-Toeplitz and Hankel determinants for strongly starlike functions, Bol. Soc. Mat. Mex. 27(2) (2021), Art. No. 55, 16 pp.10.1007/s40590-021-00362-ySearch in Google Scholar

[20] LEHTO, O.: Univalent Functions and Teichmüller Space. Graduate Texts in Math. 109, Springer-Verlag, New York, 1987.10.1007/978-1-4613-8652-0Search in Google Scholar

[21] NAG, S.: The Complex Analytic Theory of Teichmüller Space, Wiley-Interscience, New York, 1988.Search in Google Scholar

[22] LIBERA, R. J.—ZLOTKIEWICZ, E. J.: Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), 225–230.10.1090/S0002-9939-1982-0652447-5Search in Google Scholar

[23] LIBERA, R. J.—ZLOTKIEWICZ, E. J.: Coefficient bounds for the inverse of a function with derivatives in P , Proc. Amer. Math. Soc. 87 (1983), 251–257.10.1090/S0002-9939-1983-0681830-8Search in Google Scholar

[24] MA, W.—MINDA, D.: A unified treatment of some special classes of univalent functions, Proceedings of the International Conference on Complex Analysis at the Nankai Institute of the Mathematics, 1992, 157–169.Search in Google Scholar

[25] NEHARI, Z.: The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551.10.1090/S0002-9904-1949-09241-8Search in Google Scholar

[26] SCHIPPERS, E.: Distorion theorems for higher-order Schwarzian derivatives of univalent functions, Proc. Amer. Math. Soc. 128 (2000), 3241–3249.10.1090/S0002-9939-00-05623-9Search in Google Scholar

[27] SHEN, Y. L.: Weil-Petersson Teichmüller space, Amer. J. Math. 140 (2018), 1041–1074.10.1353/ajm.2018.0023Search in Google Scholar

[28] SHEN, Y. L.—TANG S. A.—WU, L.: Weil-Petersson and little Teichmüller spaces on the real line, Ann. Acad. Sci. Fenn. Math. 43 (2018), 935–943.10.5186/aasfm.2018.4358Search in Google Scholar

[29] SHEN, Y. L.—WEI, H. Y.: Universal Teichmöller space and BMO, Adv. Math. 234 (2013), 129–148.10.1016/j.aim.2012.10.017Search in Google Scholar

[30] SIM, Y. J.—LECKO, A.—THOMAS, D. K.: The second Hankel determinant for strongly convex and Ozaki close-to-convex functions, Ann. Mat. Pura. Appl. 200 (2021), 1–19.10.1007/s10231-021-01089-3Search in Google Scholar

[31] SIM, Y. J.—THOMAS D. K.—ZAPRAWA, P.: The second Hankel determinant for starlike and convex functions of order alpha, Complex Var. Elliptic Equ. 67(10) (2022), 2423–2443.10.1080/17476933.2021.1931149Search in Google Scholar

[32] STANKIEWICZ, J.: Quelques problèmes extrémaux dans les classes des fonctions a-angulairement étoilées, (French) Ann. Univ. Mariae Curie-Skłodowska Sect. A 20 (1966), 59–75.Search in Google Scholar

[33] STANKIEWICZ, J.: On a family of starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 22(24) (1968/1970), 175–181.Search in Google Scholar

[34] SUGAWA, T.: Inner radius of univalence for a strongly starlike domain, Monatsh. Math. 139 (2003), 61–68.10.1007/s00605-002-0541-9Search in Google Scholar

[35] TAMANOI, H.: Higher Schwarzian operators and combinatorics of the Schwarzian derivative, Math. Ann. 305 (1996), 127–151.10.1007/BF01444214Search in Google Scholar

[36] TANG, S. A.—JIN, J. J.: Higher Bers maps and Weil-Petersson Teichmüller space, Kodai Math. J. 41 (2018), 554–565.10.2996/kmj/1540951253Search in Google Scholar

[37] TANG, S. A.—JIN, J. J.: Higher Bers maps and BMO-Teichmüller space, J. Math. Anal. Appl. 460 (2018), 63–75.10.1016/j.jmaa.2017.11.025Search in Google Scholar

[38] THOMAS, D. K.—VERMA, S.: Invariance of the coefficients of strongly convex funcion, Bull. Aust. Math. Soc. 95 (2017), 436–445.10.1017/S0004972716000976Search in Google Scholar

Received: 2022-05-11
Accepted: 2022-11-05
Published Online: 2023-08-04

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0068/html
Scroll to top button