Startseite Oscillation of Odd Order Linear Differential Equations with Deviating Arguments with Dominating Delay Part
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oscillation of Odd Order Linear Differential Equations with Deviating Arguments with Dominating Delay Part

  • Blanka Baculíková
Veröffentlicht/Copyright: 4. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

In this paper new oscillatory criteria for odd order linear functional differential equations of the type

y(n)(t)+p(t)y(τ(t))=0

have been established. Deviating argument τ(t) is supposed to have dominating delay part.

2020 Mathematics Subject Classification: 34K11; 34C10

(Communicated by Michal Fečkan)


REFERENCES

[1] Agarwal, R. P.—Grace, S. R.—O’Regan, D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations, Kluver Academic Publishers, Dotrecht 2002.10.1007/978-94-017-2515-6Suche in Google Scholar

[2] BACULÍKOVÁ, B.: Oscillation of second-order nonlinear noncanonical differential equations with deviating argument, Appl. Math. Lett. 91 (2019), 68–75.10.1016/j.aml.2018.11.021Suche in Google Scholar

[3] BACULÍKOVÁ, B.: Oscillatory behavior of the second order noncanonical differential equation, Electron. J. Qual. Theory Differ. Equ. 89 (2019), 1–17.10.14232/ejqtde.2019.1.89Suche in Google Scholar

BACULÍKOVÁ, B.: Oscillation and asymptotic properties of second order half-linear differential equations with mixed deviating arguments, Mathematics 9 (2021), 1–12.10.3390/math9202552Suche in Google Scholar

[5] DOŠLÝ, O.—ŘEHÁK, P.: Half-linear Differential Equations., North-Holland Mathematics Studies, vol. 202, 2005.10.1016/S1874-5725(00)80005-XSuche in Google Scholar

[6] ĎZURINA, J.—BACULÍKOVÁ, B.: Oscillation of half-linear differential equation with mixed type of argument, Electron. J. Qual. Theory Differ. Equ. 10 (2022), 1–8.10.14232/ejqtde.2022.1.10Suche in Google Scholar

[7] KIGURADZE, I. T.—CHATURIA, T. A.: Asymptotic Properties of Solutions of Nonatunomous Ordinary Differential Equations, Kluwer Acad. Publ., Dordrecht 1993.10.1007/978-94-011-1808-8Suche in Google Scholar

[8] KOPLATADZE, R.: On differential equations with a delayed argument having properties A and B, Differen-tialnye Uravneniya 25 (1989), 1897–1909.Suche in Google Scholar

[9] KOPLATADZE, R.: On oscillatory properties of solutions of functional differential equations, Mem. Differential Equations Math. Phys. 3 (1994), 1–179.Suche in Google Scholar

[10] KOPLATADZE, R.—KVINKADZE, G.—STAVROULAKIS, I. P.: Properties A and B of n-th order linear differential equations with deviating argument, Georgian Math. J. 6 (1999), 553–566.10.1515/GMJ.1999.553Suche in Google Scholar

[11] KOPLATADZE, R.—CHANTURIA, T. A.: On Oscillatory Properties of Differential Equations with Deviating Arguments, Tbilisi Univ. Press, Tbilisi, 1977.Suche in Google Scholar

[12] KUSANO, T.: On even order functional differential equations with advanced and retarded arguments, J. Differential Equations 45 (1982), 75–84.10.1016/0022-0396(82)90055-9Suche in Google Scholar

[13] KUSANO, T.: Oscillation of even order linear functional differential equations with deviating arguments of mixed type, J. Math. Anal. Appl. 98 (1984), 341–347.10.1016/0022-247X(84)90253-1Suche in Google Scholar

[14] LADDAS, G.—LAKSHMIKANTHAM, V.—PAPADAKIS, J. S.—ZHANG, B. G.: Oscillation of higher-order retarded differential equations generated by retarded argument. In: Delay and Functional Differential Equations and Their Applications, Academic Press, New York, 1972, pp. 219–231.10.1016/B978-0-12-627250-5.50013-7Suche in Google Scholar

Received: 2022-07-25
Accepted: 2022-09-12
Published Online: 2023-08-04

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 18.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0070/html
Button zum nach oben scrollen