Startseite Mathematik A Note on Special Subsets of the Rudin-Frolík Order for Regulars
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Note on Special Subsets of the Rudin-Frolík Order for Regulars

  • Joanna Jureczko
Veröffentlicht/Copyright: 4. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

We show that there is a set of 22 κ ultrafilters incomparable in the Rudin-Frolík order of βκ\κ, where κ is regular, for which no subset with more than one element has an infimum.

2020 Mathematics Subject Classification: Primary 03E10; 03E20; 03E30

(Communicated by L’ubica Holá)


Acknowledgement

The author is very grateful to the anonymous reviewers for their insight in reading the previous version of this paper. Their remarks undoubtedly avoided many inaccuracies and made the text more readable.

REFERENCES

[1] BAKER, J.—KUNEN, K.: Limits in the uniform ultrafilters, Trans. Amer. Math. Soc. 353(10) (2001), 4083–4093.10.1090/S0002-9947-01-02843-4Suche in Google Scholar

[2] BOOTH, D.: Ultrafilters on a countable set, Ann. Math. Log. 2(1) (1970-71), 1–24.10.1016/0003-4843(70)90005-7Suche in Google Scholar

[3] BUKOVSKÝ, L.—BUTKOVIČOVÁ, E.: Ultrafilter with 0 predecessors in Rudin-Frolík order, Comment. Math. Univ. Carolin. 22(3) (1981), 429–447.Suche in Google Scholar

[4] BUTKOVIČOVÁ, E.: Ultrafilters without immediate predecessors in Rudin-Frolk order, Comment. Math. Univ. Carolin. 23(4) (1982), 757–766.Suche in Google Scholar

[5] BUTKOVIČOVÁ, E.: Long chains in Rudin-Frolík order, Comment. Math. Univ. Carolin. 24(3) (1983), 563–570.Suche in Google Scholar

[6] BUTKOVIČOVÁ, E.: Subsets of β without an infimum in Rudin-Frolík order, Proc. of the 11th Winter School on Abstract Analysis, Zelezna Ruda 1983, Rend. Circ. Mat. Palermo (2) (1984), Suppl. No. 3, 75–80.Suche in Google Scholar

[7] BUTKOVIČOVÁ, E.: Decrasing chains without lower bounds in the Rudin-Frolík order, roc. Amer. Math. Soc. 109(1) (1990), 251–259.10.1090/S0002-9939-1990-1007490-8Suche in Google Scholar

[8] COMFORT, W. W.—NEGREPONTIS, S.: The Theory of Ultrafilters. Grundlehren Math. Wiss. 211, Springer-Verlag, New York-Heidelberg, 1974.10.1007/978-3-642-65780-1Suche in Google Scholar

[9] FROLÍK, Z.: Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87–91.10.1090/S0002-9904-1967-11653-7Suche in Google Scholar

[10] GITIK, M.: Some constructions of ultrafilters over a measurable cardinal, Ann. Pure Appl. Logic 171(8) (2020), Art. ID 102821.10.1016/j.apal.2020.102821Suche in Google Scholar

[11] JECH, T.: Set Theory. The Third Millennium Edition, revised and expanded, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003.Suche in Google Scholar

[12] JURECZKO, J.: Chains in the Rudin-Frolík order for regulars, https://arxiv.org/pdf/2304.0097.pdf.Suche in Google Scholar

[13] JURECZKO, J.: Decreasing chains without lower bounds in the Rudin-Frolík order for regulars, https://arxiv.org/pdf/2304.01398.pdf.Suche in Google Scholar

[14] JURECZKO, J.: Ultrafilters without immediate predecessors in Rudin-Frolík order for regulars, Results Math. 77(6) (2022), Art. No. 230, 11 pp.10.1007/s00025-022-01762-wSuche in Google Scholar

[15] JURECZKO, J.: On some constructions of ultrafilters over a measurable cardinal, in preparation.Suche in Google Scholar

[16] KANAMORI, A.: Ultrafilters over a measurable cardinal, Ann. Math. Log. 11 (1976), 315–356.10.1016/0003-4843(76)90012-7Suche in Google Scholar

[17] KUNEN, K.: Weak P-points in*, Topology, Vol. II (Proc. Fourth Colloq., Budapest, 1978), pp. 741–749, Colloq. Math. Soc. János Bolyai 23, North-Holland, Amsterdam-New York, 1980.Suche in Google Scholar

[18] RUDIN, M. E.: Types of ultrafilters, Topology Seminar Wisconsin, 1965, Princeton Universiy Press, Princeton, 1966.10.1515/9781400882076-021Suche in Google Scholar

[19] RUDIN, M. E.: Partial orders on the types in β , Trans. Amer. Math. Soc. 155 (1971), 353–362.10.2307/1995690Suche in Google Scholar

Received: 2022-02-07
Accepted: 2022-09-19
Published Online: 2023-08-04

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0060/pdf
Button zum nach oben scrollen