Startseite Iterative Criteria for Oscillation of Third-Order Delay Differential Equations with p-Laplacian Operator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Iterative Criteria for Oscillation of Third-Order Delay Differential Equations with p-Laplacian Operator

  • Osama Moaaz , Ali Muhib , Hijaz Ahmad EMAIL logo und Waad Muhsin
Veröffentlicht/Copyright: 15. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

The aim of the paper is to study the oscillation behavior for third-order differential equations with several delays and with p-Laplacian operator. Our technique bases essentially on the presentation of sharper estimates of positive solutions of the equation studied using an iterative method. What is more, the iterative nature of the new criteria allows us to check for oscillation of all solutions, even if the known findings relevant to this fail to apply.

2020 Mathematics Subject Classification: 34C10; 34K11

(Communicated by Jozef Džurina)


REFERENCES

[1] Agarwal, R. P.—Grace, S. R.—O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations, Marcel Dekker, Kluwer Academic, Dordrecht, 2000.10.1007/978-94-015-9401-1Suche in Google Scholar

[2] Ahmad, H.—Tariq, M.—Sahoo, S. K.—Askar, S.—Abouelregal, A. E.—Khedher, K. M.: Refinements of Ostrowski type integral inequalities involving Atangana-Baleanu fractional integral operator, Symmetry 13(11) (2021), Art. No. 2059.10.3390/sym13112059Suche in Google Scholar

[3] Ahmad, H.—Tariq, M.—Sahoo, S. K.— Baili, J.—Cesarano, C.: New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract. 5(4) (2021), Art. No. 144.10.3390/fractalfract5040144Suche in Google Scholar

[4] Aronsson, G.—Janfalk, U.: On Hele-Shaw flow of power-law fluids, European J. Appl. Math. 3 (1992), 343–366.10.1017/S0956792500000905Suche in Google Scholar

[5] Baculiková, B.—Džurina, J.: Oscillation of third-order nonlinear differential equations, Appl. Math. Lett. 24 (2011), 466–470.10.1016/j.aml.2010.10.043Suche in Google Scholar

[6] Baculíková, B.—Džurina, J.: On the asymptotic behavior of a class of third order nonlinear neutral differential equations, Cent. Eur. J. Math. 8(6) (2010), 1091–1103.10.2478/s11533-010-0072-xSuche in Google Scholar

[7] Baculíková, B.—Džurina, J.: On the oscillation of odd order advanced differential equations, Bound. Value Probl. 2014 (2014), Art. No. 214.10.1186/s13661-014-0214-3Suche in Google Scholar

[8] Bazighifan, O.—Ahmad, H.: Asymptotic behavior of solutions of even-order advanced differential equations, Math. Probl. Eng. 2020 (2020), Art. ID 8041857.10.1155/2020/8041857Suche in Google Scholar

[9] Bazighifan, O.—Ahmad, H.—Yao, S.-W.: New oscillation criteria for advanced differential equations of fourth order, Mathematics 8(5) (2020), Art. No. 728.10.3390/math8050728Suche in Google Scholar

[10] Campıtı, M.: Second-order differential operators with non-local Ventcel’s boundary conditions, Constr. Math. Anal. 2(4) (2019), 144–152.10.33205/cma.574194Suche in Google Scholar

[11] Candan, T.: Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations, Adv. Difference Equ. 2014 (2014), Art. No. 35.10.1186/1687-1847-2014-35Suche in Google Scholar

[12] Chatzarakis, G. E.—Grace, S. R.—Jadlovská, I.: Oscillation criteria for third-order delay differential equations, Adv. Difference Equ. 2017 (2017), Art. No. 330.10.1186/s13662-017-1384-ySuche in Google Scholar

[13] Chatzarakis, G. E.—Moaaz, O.—Li, T.—Qaraad, B.: Some Oscillation theorems for nonlinear second-order differential equations with an advanced argument, Adv. Difference Equ. 2020 (2020), Art. No. 160.10.1186/s13662-020-02626-9Suche in Google Scholar

[14] Chatzarakis, G. E.—Džurina, J.—Jadlovská, I.: Oscillatory and asymptotic properties of third-order quasilinear delay differential equations, J. Inequal. Appl. 2019 (2019), Art. No. 23.10.1186/s13660-019-1967-0Suche in Google Scholar

[15] Chatzarakis, G. E.—Džurina, J.—Jadlovská, I.: New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput. 347 (2019), 404–416.10.1016/j.amc.2018.10.091Suche in Google Scholar

[16] Džurina, J.—Grace, S. R.—Jadlovská, I.: On nonexistence of Kneser solutions of third-order neutral delay differential equations, Appl. Math. Lett. 88 (2019), 193–200.10.1016/j.aml.2018.08.016Suche in Google Scholar

[17] Džurina, J.—Jadlovská, I.: Oscillation of third-order differential equations with noncanonical operators, Appl. Math. Comput. 336 (2018), 394–402.10.1016/j.amc.2018.04.043Suche in Google Scholar

[18] Elabbasy, E. M.—Hassan, T. S.—Elmatary, B. M.: Oscillation criteria for third order delay nonlinear differential equations, Electron. J. Qual. Theory Differ. Equ. 5 (2012), 11 pp.10.14232/ejqtde.2012.1.5Suche in Google Scholar

[19] Grace, S. R.: Oscillation theorems for second order nonlinear differential equations with damping, Math. Nachr. 141 (1989), 117–127.10.1002/mana.19891410114Suche in Google Scholar

[20] Grace, S. R.—Graef, J. R.—Tunc, E.: Oscillatory behavior of second order damped neutral differential equations with distributed deviating arguments, Miskolc Math. Notes 18 (2017), 759–769.10.18514/MMN.2017.2326Suche in Google Scholar

[21] Grace, S. R.—Džurina, J.—Jadlovská, I.—Li, T.: An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl. 2018 (2018), Art. No. 193.10.1186/s13660-018-1767-ySuche in Google Scholar PubMed PubMed Central

[22] Jayaraman, G.—Padmanabhan, N.—Mehrotra, R.: Entry flow into a circular tube of slowly varying cross-section, Fluid Dyn. Res. 1(2) (1986), 131–144.10.1016/0169-5983(86)90013-4Suche in Google Scholar

[23] Kitamura, Y.—Kusano, T.: Oscillation of first-order nonlinear differential equations with deviating arguments, Proc. Amer. Math. Soc. 78(1) (1980), 64–68.10.1090/S0002-9939-1980-0548086-5Suche in Google Scholar

[24] Li, T.—Zhang, C.—Xing, G.: Oscillation of third-order neutral delay differential equations, Abstr. Appl. Anal. textbf2012 (2012), 1–11.10.1155/2012/569201Suche in Google Scholar

[25] Mckean, H. P.: Nagumo’s equation, Adv. Math. 4(3) (1970), 209–223.10.1016/0001-8708(70)90023-XSuche in Google Scholar

[26] Moaaz, O.: New criteria for oscillation of nonlinear neutral differential equations, Adv. Difference Equ. 2019 (2019), Art. No. 484.10.1186/s13662-019-2418-4Suche in Google Scholar

[27] Moaaz, O.: Oscillatory behavior of solutions of odd-order nonlinear delay differential equations, Adv. Difference Equ. 2020 (2020), Art. No. 357.10.1186/s13662-020-02821-8Suche in Google Scholar

[28] Moaaz, O.—Awrejcewicz, J.—Muhib, A.: Establishing new criteria for oscillation of odd-order nonlinear differential equations, Mathematics 8 (2020), Art. No. 937.10.3390/math8060937Suche in Google Scholar

[29] Moaaz, O.—Anis, M.—Baleanu, D.—Muhib, A.: More effective criteria for oscillation of second-order differential equations with neutral arguments, Mathematics 8 (2020), Art. No. 986.10.3390/math8060986Suche in Google Scholar

[30] Moaaz, O.—Baleanu, D.—Muhib, A.: New aspects for non-existence of Kneser solutions of neutral differential equations with odd-order, Mathematics 8(4) (2020), Art. No. 494.10.3390/math8040494Suche in Google Scholar

[31] Moaaz, O.—Dassios, I.—Muhsin, W.—Muhib, A.: Oscillation theory for non-linear neutral delay differential equations of third order, Appl. Sci. 10 (2020), Art. No. 4855.10.3390/app10144855Suche in Google Scholar

[32] Moaaz, O.—Elabbasy, E. M.—Qaraad, B.: Oscillation criteria for second-order quasilinear neutral differential equation with deviating arguments, J. Inequal. Appl. 2020 (2020), Art. No. 69.10.1186/s13660-020-02332-wSuche in Google Scholar

[33] Senasukh, J.—Saejung, S.: A note on the stability of some functional equations on certain groupoids, Constr. Math. Anal. 3(2) (2020), 96–103.10.33205/cma.729765Suche in Google Scholar

[34] Philos, C.: On the existence of nonoscillatory solutions tending to zero atfor differential equations with positive delays, Arch. Math. (Basel) 36(2) (1981), 168–178.10.1007/BF01223686Suche in Google Scholar

[35] Vreeke, S. A.—Sandquist, G. M.: Phase space analysis of reactor kinetics, Nucl. Sci. Eng. 42(3) (1970), 295–305.10.13182/NSE70-A21219Suche in Google Scholar

Received: 2021-08-23
Accepted: 2022-03-25
Published Online: 2023-06-15

© 2023 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Parameters in Inversion Sequences
  2. On the Pecking Order Between Those of Mitsch and Clifford
  3. A Note on Cuts of Lattice-Valued Functions and Concept Lattices
  4. Trigonometric Sums and Riemann Zeta Function
  5. Notes on the Equation d(n) = d(φ(n)) and Related Inequalities
  6. Harmony of Asymmetric Variants of the Filbert and Lilbert Matrices in q-form
  7. Maximal Density and the Kappa Values for the Families {a, a + 1, 2a + 1, n} and {a, a + 1, 2a + 1, 3a + 1, n}
  8. Extensions in Time Scales Integral Inequalities of Jensen’s Type via Fink’s Identity
  9. A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions
  10. Extended Bromwich-Hansen Series
  11. Iterative Criteria for Oscillation of Third-Order Delay Differential Equations with p-Laplacian Operator
  12. Vallée-Poussin Theorem for Equations with Caputo Fractional Derivative
  13. On Oscillatory Behavior of Third Order Half-Linear Delay Differential Equations
  14. On Existence and Uniqueness of Solutions for Ordinary Differential Equations in Locally Convex Topological Linear Spaces
  15. Bounds on Blow-Up Time for a Higher-Order Non-Newtonian Filtration Equation
  16. On a Solvable System of Difference Equations in Terms of Generalized Fibonacci Numbers
  17. The Smallest and the Largest Families of Some Classes of 𝒜-Continuous Functions
  18. Type II Exponentiated Half-Logistic Gompertz-G Family of Distributions: Properties and Applications
  19. Strong Consistency of Least-Squares Estimators in the Simple Linear Errors-in-Variables Regression Model with Widely Orthant Dependent Random Variables
Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0051/html
Button zum nach oben scrollen