Home Mathematics Type II Exponentiated Half-Logistic Gompertz-G Family of Distributions: Properties and Applications
Article
Licensed
Unlicensed Requires Authentication

Type II Exponentiated Half-Logistic Gompertz-G Family of Distributions: Properties and Applications

  • Thatayaone Moakofi EMAIL logo and Broderick Oluyede
Published/Copyright: June 15, 2023
Become an author with De Gruyter Brill

ABSTRACT

In this work, a new family of distributions referred to as type II exponentiated half-logistic-Gompertz-G (TIIEHL-Gom-G) family of distributions is introduced and studied. Some of the main statistical properties of these family of distributions are derived. The model parameters are estimated using the maximum likelihood estimation technique and consistency of maximum likelihood estimators is evaluated by performing a simulation study. The importance and versatility of the TIIEHL-Gom-G family of distributions is demonstrated in an application to two real data sets from different fields.

2020 Mathematics Subject Classification: 60E05; 62F10

(Communicated by Gejza Wimmer)


REFERENCES

[1] Abouelmagd, T. H. M.—Hamed, M. S.—Ebraheim, A. E. H. N.: The Poisson-G family of distributions with applications, Pakistan J. Stat. Oper. Res. 13(2) (2017), 313–326.10.18187/pjsor.v13i2.1740Search in Google Scholar

[2] Ahmad, Z.—Elgarhy, M.—Hamedani, G. G.: A new Weibull-X family of distributions: Properties, characterizations and applications, J. Stat. Distrib. Appl. 5(1) (2018), 1–18.10.1186/s40488-018-0087-6Search in Google Scholar

[3] Aldahlan, M.—Afify, A. Z.: The odd exponentiated Half-Logistic Burr XII distribution, Pakistan J. Stat. Oper. Res. 14(2) (2018), 305–317.10.18187/pjsor.v14i2.2285Search in Google Scholar

[4] Al-Aqtash, R.—Lee, C.—Famoye, F.: Gumbel-Weibull distribution: Properties and applications, J. Mod. Appl. Stat. Methods 13(2) (2014), 11.10.22237/jmasm/1414815000Search in Google Scholar

[5] Al-Babtain, A. A.—Elbatal, I.—Al-Mofleh, H.—Gemeay, A. M.—Afify, A. Z.—Sarg, A. M.: The flexible Burr X-G family: Properties, inference, and applications in engineering science, Symmetry 13(3) (2021), 474.10.3390/sym13030474Search in Google Scholar

[6] Afify, A. Z.—Al-Mofleh, H.—Dey, S.: Topp-Leone Odd Log-Logistic Exponential Distribution: Its Improved Estimators and Applications, An. Acad. Brasil. Ciênc. 93(4), e20190586, 1–14, %%DOI: https://doi.org/10.1590/0001-376520212019058610.1590/0001-3765202120190586Search in Google Scholar PubMed

[7] Awodutire, P. O.—Balogun, O. S.—Olapade, A. K.—Nduka, E. C.: The Modified Beta Transmuted Family of Distributions with Applications using the Exponential Distribution, Plos One 16(11) (2021), Aer. Id. e0258512.10.1371/journal.pone.0258512Search in Google Scholar PubMed PubMed Central

[8] Alizadeh, M.—Cordeiro, G. M.—Pinho, L. G. B.—Ghosh, I.: The Gompertz-G Family of Distributions, J. Stat. Theory Pract. 11(1) (2017), 179–207.10.1080/15598608.2016.1267668Search in Google Scholar

[9] Alizadeh, M.—Lak, F.—Rasekhi, M.—Ramires, T. G.—Yousof, H. M.—Altun, E.: The Odd Log-Logistic Topp–Leone G Family of Distributions: Heteroscedastic Regression Models and Applications, Computational Statistics 33(3) (2018), 1217–1244.10.1007/s00180-017-0780-9Search in Google Scholar

[10] Al-Mofleh, H.— Elgarhy, M.—Afify, A.—Zannon, M.: Type II Exponentiated Half Logistic Generated Family of Distributions with Applications, Electron. J. Appl. Stat. Anal. 13(2) (2020), 536–561.Search in Google Scholar

[11] Ampadu, C. B.: The Zeid-G Family of Distributions, Biomedical Journal of Scientific and Technical Research 27(4) (2020), 20940–20942.10.26717/BJSTR.2020.27.004535Search in Google Scholar

[12] Aslam, M.—Hussain, Z.—Asghar, Z.: Cubic Transmuted-G Family of Distributions and its Properties, Stochastics and Quality Control, 33(2), (2018), 103-112.10.1515/eqc-2017-0027Search in Google Scholar

[13] Bantan, R. A.—Jamal, F.—Chesneau, C.—Elgarhy, M.: Type II Power Topp-Leone Generated Family of Distributions with Statistical Inference and Applications, Symmetry, 12(1) (2020), 75.10.3390/sym12010075Search in Google Scholar

[14] Batsidis, A.— Lemonte, A. J.: On the Harris Extended Family of Distributions, Statistics 49(6) (2015), 1400–1421.10.1080/02331888.2014.969732Search in Google Scholar

[15] Chambers, J.—Cleveland, W.—Kleiner, B.—Tukey, J.: Graphical Methods for Data Analysis, Chapman and Hall, London, 1983.Search in Google Scholar

[16] Chen, G.—Balakrishnan, N.: A general purpose approximate goodness-of-fit test, J. Qual. Technol. 27 (1995), 154–161.10.1080/00224065.1995.11979578Search in Google Scholar

[17] Chipepa, F.—Oluyede, B.—Wanduku, D.—Moakofi, T.: The exponentiated Half Logistic-Topp-Leone-G power series class of distributions: Model, properties and applications, In: Methods of Mathematical Modelling and Computation for Complex Systems, Springer, Cham, 2022, 341–374.10.1007/978-3-030-77169-0_14Search in Google Scholar

[18] Cordeiro, G. M.—Lemonte, A. J.: The β-Birnbaum-Saunders distribution: An improved distribution for fatigue life modeling, Comput. Stat. Data Anal. 55(3) (2011), 1445–1461.10.1016/j.csda.2010.10.007Search in Google Scholar

[19] El-Gohary, A.—Alshamrani, A.—Al-Otaibi, A. N.: The generalized Gompertz distribution, Appl. Math. Model. 37(1–2) (2013), 13–24.10.1016/j.apm.2011.05.017Search in Google Scholar

[20] El-Morshedy, M.—El-Faheem, A. A.—El-Dawoody, M.: Kumaraswamy inverse Gompertz distribution: Properties and engineering applications to complete, type-II right censored and upper record data, Plos one 15(12) (2020), Art. Id. e0241970.10.1371/journal.pone.0241970Search in Google Scholar PubMed PubMed Central

[21] Hamedani, G. G.—Rasekhi, M.—Najibi, S.—Yousof, H. M.—Alizadeh, M.: Type II general exponential class of distributions, Pakistan. J. Stat. Oper. Res. (2019), 503–523.10.18187/pjsor.v15i2.1699Search in Google Scholar

[22] Hassan, A. S.—Nassr, S. G.: Power Lindley-G family of distributions, Ann. Data Sci. 6(2) (2019), 189–210.10.1007/s40745-018-0159-ySearch in Google Scholar

[23] Jamal, F.—Chesneau, C.—Elgarhy, M.: Type II general inverse exponential family of distributions, Int. J. Stat. Manag. Syst. 23(3) (2020), 617–641.10.1080/09720510.2019.1668159Search in Google Scholar

[24] Moakofi, T.—Oluyede, B.—Chipepa, F.: Type II Exponentiated Half-logistic Topp-Leone Marshall-Olkin-G family of distributions with applications, Heliyon 7 (2021).10.1016/j.heliyon.2021.e08590Search in Google Scholar PubMed PubMed Central

[25] Moakofi, T.—Oluyede, B.—Chipepa, F.: Type II Exponentiated Half-Logistic-Topp-Leone-G power series class of distributions with applications, Pakistan. J. Stat. Oper. Res. 17(4) (2021), 885–909.10.18187/pjsor.v17i4.3775Search in Google Scholar

[26] Nadarajah, S.—Kotz, S.: On some recent modifications of Weibull distribution, IEEE Transactions on Reliability 54(4) (2005), 561–562.10.1109/TR.2005.858811Search in Google Scholar

[27] Nasir, M. A.—Tahir, M. H.—Chesneau, C.—Jamal, F.—Shah, M. A. A.: The odds generalized Gamma-G Family of distributions: Properties, regressions and applications, Statistica 80(1) (2020), 3–38.Search in Google Scholar

[28] Nichols, M. D.—Padgett, W. J. A.: A Bootstrap Control Chart for Weibull Percentiles, 2006.10.1002/qre.691Search in Google Scholar

[29] Oluyede, B.—Chipepa, F.—Wanduku, D.: The exponentiated Half Logistic-Power generalized Weibull-G Family of distributions: Model, properties and applications, Eurasian Bulletin of Mathematics 3(3) (2020), 134–161.Search in Google Scholar

[30] Oluyede, B.—Moakofi, T.—Chipepa, F.—Makubate, B.: A new power generalized Weibull-G Family of distributions: Properties and applications, J. Stat. Model. Theory Appl. 1(2) (2020), 167–191.Search in Google Scholar

[31] Rényi, A.: On measures of entropy and information, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability 1 (1960), 547–561.Search in Google Scholar

[32] ZeinEldin, R. A.—Hashmi, S.—Elsehety, M.—Elgarhy, M.: Type II Half-Logistic Kumaraswamy distribution with applications, J. Funct. Spaces 2020 (2020), Art. ID 1343596, 15 pp.10.1155/2020/1343596Search in Google Scholar

1. Appendix

1.1. Series expansion of density function

We present the series expansion of the TIIEHL-Gom-G density function. Using the generalized binomial and Taylor series expansions given by

(1+z)β=k=0(1)k(β+k1k)zkfor |z|<1 and ez=i=0zii!,

we have

1.1 f(x;α,γ,ψ)=2αexp(αγ(1[1G(x;ψ)]γ))[1G(x;ψ)]γ1×(1+(1exp(1γ(1[1G(x;ψ)]γ))))(α+1)g(x;ψ)=2αk=0(α+kk)(1)kexp(αγ(1[1G(x;ψ)]γ))[1G(x;ψ)]γ1×(1exp(1γ(1[1G(x;ψ)]γ)))kg(x;ψ)=2αk,m=0(α+kk)(km)(1)k+mexp(k+αγ(1[1G(x;ψ)]γ))×[1G(x;ψ)]γ1g(x;ψ)=2αk,m,l=0(α+kk)(km)(1)k+m(k+αγ)l(1[1G(x;ψ)]γ)ll!×[1G(x;ψ)]γ1g(x;ψ)=2αk,m,l,i=0(α+kk)(km)(li)(1)k+m+i(k+αγ)ll![1G(x;ψ)]γ(i+1)1g(x;ψ)=2αk,m,l,i,q=0(α+kk)(km)(li)(γ(i+1)+qq)(1)k+m+i+q(k+αγ)ll!×Gq(x;ψ)g(x;ψ)=q=0Cq+1gq+1(x;ψ),

where gq+1(x;ψ)=(q+1)[G(x;ψ)]qg(x;ψ) is the exponentiated-G (exp-G) pdf with the power parameter q + 1 > 0 and parameter vector ψ, where

1.2 Cq+1= k,m,l,i=0(α+kk)(km)(li)(γ(i+1)+qq)(1)k+m+i+q(k+αγ)ll!(2αq+1).

1.2. Rényi entropy

Rényi entropy is defined to be

1.3 IR(v)=11vlog(0[f(x;α,γ,ψ)]vdx),v1, v>0.

Note that

1.4 [f(x;α,γ,ψ)]v=(2α)vexp(vαγ(1[1G(x;ψ)]γ))[1G(x;ψ)]vγv×(1+(1exp(1γ(1[1G(x;ψ)]γ))))v(α+1)gv(x;ψ)=(2α)vk=0(v(α+1)+k1k)(1)k[1G(x;ψ)]vγv×(1exp(1γ(1[1G(x;ψ)]γ)))kgv(x;ψ)×exp(vαγ(1[1G(x;ψ)]γ))=(2α)vk,m=0(v(α+1)+k1k)(1)k+m[1G(x;ψ)]vγv×exp(vα+kγ(1[1G(x;ψ)]γ))gv(x;ψ)=(2α)vk,m,l=0(v(α+1)+k1k)(1)k+m(vα+kγ)l×(1[1G(x;ψ)]γ)ll![1G(x;ψ)]vγvgv(x;ψ)=(2α)vk,m,l,i=0(v(α+1)+k1k)(li)(1)k+m+i(vα+kγ)ll!×[1G(x;ψ)]γ(v+i)vgv(x;ψ)=(2α)vk,m,l,i,q=0(v(α+1)+k1k)(li)(1)k+m+i+q×(γ(v+i)+v+q1q)(vα+kγ)ll!Gq(x;ψ)gv(x;ψ).

Now,

1.5 0fv(x;α,γ,ψ)dx=(2α)vk,m,l,i,q=0(v(α+1)+k1k)(li)(γ(v+i)+v+q1q)×(1)k+m+i+q(vα+kγ)ll!0Gq(x;ψ)gv(x;ψ)dx.

Consequently, Rényi entropy for the TIIEHL-Gom-G family of distributions is given by

1.6 IR(v)=11vlog[k,m,l,i,q=0(v(α+1)+k1k)(li)(γ(v+i)+v+q1q)×(1)k+m+i+q(vα+kγ)ll!(2α)v[1+qv]v0([1+qv](G(x;ψ))qv(g(x;ψ)))vdx]=11vlog[q=0τqexp((1v)IREG)]

for v > 0, v ≠ 1, where IREG=11vlog[0([1+qv](G(x;ψ))qv(g(x;ψ)))vdx] is the Rényi entropy of exponentiated-G (exp-G) distribution with power parameter (qv+1) and

τq=k,m,l,i=0(v(α+1)+k1k)(li)(γ(v+i)+v+q1q)×(1)k+m+i+q(vα+kγ)ll!(2α)v[1+qv]v.

Therefore, Rényi entropy of the TIIEHL-Gom-G family of distributions can be obtained from those of the exponentiated-G (exp-G) family of distributions.

2. Applications

We employ two real data sets to compare the fits of TIIEHL-Gom-W distribution to its nested models and to the following non-nested models:

type II general inverse exponential Burr III (TIIGIE-BIII) distribution with the pdf

fTIIGIEBIII(x;λ,θ,c,k)=λθckxc1(1+xc)k1[1(1+xc)k]θ1(1[1(1+xc)k]θ)2×exp(λ[1(1+xc)k]θ1[1(1+xc)k]θ)

for λ, θ, c, k > 0 and x > 0, type II exponentiated half-logistic Topp-Leone-Weibull logarithmic (TIIEHL-TL-WL) distribution by with the pdf

fTIIEHLTLWL(x;a,b,θ,λ)=4abθλxλ1exp(xλ)[1exp(2xλ)]b1exp(xλ)(1+[1exp(2xλ)]b)a+1×(1[1exp(2xλ)]b)a1(1θ[1[1exp(2xλ)]b1+[1exp(2xλ)]b]a)1log(1θ)

for a, b, θ, λ and x > 0, type II general inverse exponential Lomax (TIIGIE-Lx) distribution with the pdf

fTIIGIELx(x;λ,α,a,b)= λαab(1+xb)(a+1)(1+xb)a(α+1)exp(λ(1(1+xb)aα))

for λ, α, a, b > 0 and x > 0, exponentiated half logistic-power generalized Weibull-log-logistic with the pdf

fEHLPGWLLoG(x;α,β,δ,c)=2αβδ[1+(1(1+xc)1(1+xc)1)α]β1e(1[1+(1(1+xc)1(1+xc)1)α]β)×((1+xc)1)(α+3)(1+e(1[1+(1(1+xc)1(1+xc)1)α]β))2×[1e(1[1+(1(1+xc)1(1+xc)1)α]β)1+e(1[1+(1(1+xc)1(1+xc)1)α]β)]δ1cxc1(1(1+xc)1)α1,

for α, β, δ, c > 0, odd exponentiated half logistic- Burr XII (OEHL-BXII) with the pdf

fOEHLBXII(x;α,λ,a,b)=2αλabxa1exp(λ[1(1+xa)b])(1exp(λ[1(1+xa)b]))α1(1+xa)b1(1+exp(λ[1(1+xa)b]))α+1,

for α, λ, a, b > 0, generalized Weibull Gompertz (GWG) with the pdf

fGWG(x;a,b,c,d)=abxb1exp(axb(ecxd)+cxd)(1+cdbxdecxd),

for a,b,c,d > 0, Harris extended Gompertz (HEG) with the pdf

fHEG(x;θ,β,c,k)=θ1kβcxexp(β(cx1)log(c))(1(1θ)exp(kβ(cx1)log(c)))1+1k,

for Θ,β,c,k > 0, Kumaraswamy inverse Gompertz (KuIG) with the pdf

fKIG(x;α,β,γ)=αγx2exp(βx)exp(αβexp(βx1))(1exp(αβexp(βx1)))γ1,

for α,β,γ > 0, and generalized Gompertz (GG) with the pdf

fGG(x;λ,c,θ)=θλexp(cx)exp(λcexp(cx1))(1exp(λcexp(cx1)))θ1,

for λ,c,θ > 0.

2.1. Elements of score vector

The first derivative of the log-likelihood function with respect to each component of the parameter vector Δ=(α,γ,ψ)T, that is, elements of the score vector U(Δ) are given by

nα=nα+i=1n(1γ(1[1G(x;ψ)]γ))i=1nln(1+(1exp(1γ(1[1G(x;ψ)]γ)))),nγ =i=1nαγ2(1[1G(x;ψ)]γ)αγ[1G(x;ψ)]γln[1G(x;ψ)]i=1nln[1G(x;ψ)](α+1)i=1nexp(1γ(1[1G(x;ψ)]γ))(1+(1exp(1γ(1[1G(x;ψ)]γ))))×(γ2(1[1G(x;ψ)]γ)1γ[1G(x;ψ)]γln[1G(x;ψ)]),ψk=i=1nα[1G(xi;ψ)]γ1G(xi;ψ)ψk(γ1)i=1nG(xi;ψ)ψk[1G(xi;ψ)]+(α+1)i=1nexp(1γ(1[1G(xi;ψ)]γ))[1G(xi;ψ)]γ1G(xi;ψ)ψk(1+(1exp(1γ(1[1G(xi;ψ)]γ))))+i=1ng(xi;ψ)ψk(g(xi;ψ)).

Received: 2022-02-05
Accepted: 2022-06-25
Published Online: 2023-06-15

© 2023 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. Parameters in Inversion Sequences
  2. On the Pecking Order Between Those of Mitsch and Clifford
  3. A Note on Cuts of Lattice-Valued Functions and Concept Lattices
  4. Trigonometric Sums and Riemann Zeta Function
  5. Notes on the Equation d(n) = d(φ(n)) and Related Inequalities
  6. Harmony of Asymmetric Variants of the Filbert and Lilbert Matrices in q-form
  7. Maximal Density and the Kappa Values for the Families {a, a + 1, 2a + 1, n} and {a, a + 1, 2a + 1, 3a + 1, n}
  8. Extensions in Time Scales Integral Inequalities of Jensen’s Type via Fink’s Identity
  9. A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions
  10. Extended Bromwich-Hansen Series
  11. Iterative Criteria for Oscillation of Third-Order Delay Differential Equations with p-Laplacian Operator
  12. Vallée-Poussin Theorem for Equations with Caputo Fractional Derivative
  13. On Oscillatory Behavior of Third Order Half-Linear Delay Differential Equations
  14. On Existence and Uniqueness of Solutions for Ordinary Differential Equations in Locally Convex Topological Linear Spaces
  15. Bounds on Blow-Up Time for a Higher-Order Non-Newtonian Filtration Equation
  16. On a Solvable System of Difference Equations in Terms of Generalized Fibonacci Numbers
  17. The Smallest and the Largest Families of Some Classes of 𝒜-Continuous Functions
  18. Type II Exponentiated Half-Logistic Gompertz-G Family of Distributions: Properties and Applications
  19. Strong Consistency of Least-Squares Estimators in the Simple Linear Errors-in-Variables Regression Model with Widely Orthant Dependent Random Variables
Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0058/html
Scroll to top button