ABSTRACT
In this paper, an equality is proved for twice differentiable convex functions involving Riemann–Liouville fractional integral. With the help of this equality, there are established several fractional Simpson type inequalities for functions whose second derivatives in absolute value are convex. By using special cases of the main results, previously obtained Simpson type inequalities are found for the Riemann–Liouville fractional integral.
REFERENCES
[1] Abdeljawad, T.—Rashid, S.—Hammouch, Z.—İşcan, İ.—Chu, Y.-M.: Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Difference Equ. 2020 (2020), Art. No. 496.10.1186/s13662-020-02955-9Suche in Google Scholar
[2] Agarwal, P.—Tariboon, J.—Ntouyas, S. K.: Some generalized Riemann–Liouville k-fractional integral inequalities, J. Inequal. Appl. 2016 (2016), Art. No. 122.10.1186/s13660-016-1067-3Suche in Google Scholar
[3] Ali, M. A.—Kara, H.—Tariboon, J.—Asawasamrit, S.—Budak, H.—Hezenci, F.: Some new Simpson’s-Formula-Type inequalities for twice-differentiable convex functions via generalized fractional operators, Symmetry 13(12) (2021), Art. No. 2249.10.3390/sym13122249Suche in Google Scholar
[4] Alomari, M.—Darus, M.—Dragomir, S. S.: New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll. 12(4) (2009).Suche in Google Scholar
[5] Budak, H.—Hezenci, F.—Kara, H.: On parameterized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integrals, Math. Methods Appl. Sci. 44(17) 2021, 12522–12536.10.1002/mma.7558Suche in Google Scholar
[6] Budak, H.—Hezenci, F.—Kara, H.: On generalized Ostrowski, Simpson and trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Difference Equ. 2021 (2021), Art. No. 312.10.1186/s13662-021-03463-0Suche in Google Scholar
[7] Chen, J.—Huang, X.: Some new inequalities of Simpson’s type for s-convex functions via fractional integrals, Filomat 31(15) (2017), 4989–4997.10.2298/FIL1715989CSuche in Google Scholar
[8] Dragomir, S. S.—Agarwal, R.—Cerone, P. P.: On Simpson’s inequality and applications, J. Inequal. Appl. 5(6) (2000), 533–579.10.1155/S102558340000031XSuche in Google Scholar
[9] Du, T.—Lİ, Y.—Yang, Z.: A generalization of Simpson’s inequality via differentiable mapping using extended (s,m)-convex functions, Appl. Math. Comput. 293 (2017), 358–369.10.1016/j.amc.2016.08.045Suche in Google Scholar
[10] Ertugral, F.—Sarikaya, M. Z.: Simpson type integral inequalities for generalized fractional integral, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4) (2019), 3115–3124.10.1007/s13398-019-00680-xSuche in Google Scholar
[11] Gorenflo, R.—Mainardi, F.: Fractional calculus: Integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics (Carpinteri, A., Mainardi, F., eds.), International Centre for Mechanical Sciences, vol. 378, Springer, Vienna, 1997, pp. 223–276.10.1007/978-3-7091-2664-6_5Suche in Google Scholar
[12] Hezenci, F.—Budak, H.—Kara, H.: New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equ. 2021 (2021), Art. No. 460.10.1186/s13662-021-03615-2Suche in Google Scholar
[13] Hussain, S.—Khalid, J.—Chu, Y. M.: Some generalized fractional integral Simpson’s type inequalities with applications, AIMS Math. 5(6) (2020), 5859–5883.10.3934/math.2020375Suche in Google Scholar
[14] Hussain, S.—Qaisar, S.: More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings, SpringerPlus 5(1), 2016, 1–9.10.1186/s40064-016-1683-xSuche in Google Scholar PubMed PubMed Central
[15] Iqbal, M.—Qaisar, S.—Hussain, S.: On Simpson’s type inequalities utilizing fractional integrals, J. Comput. Anal. Appl. 23(6) (2017), 1137–1145.Suche in Google Scholar
[16] İşcan, İ.: Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, J. Math. 2014 (2014).10.1155/2014/346305Suche in Google Scholar
[17] Kermausuor, S.: Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions, Kragujevac J. Math. 45(5) (2021), 709–720.10.46793/KgJMat2105.709KSuche in Google Scholar
[18] Kilbas, A. A.—Srivastava, H. M.—Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies 204, Elsevier Sci. B. V., Amsterdam, 2006.Suche in Google Scholar
[19] Lei, H.—Hu, G.—Nie, J.—Du, T.: Generalized Simpson-type inequalities considering first derivatives through the k-fractional integrals, IAENG Int. J. Appl. Math. 50(3) (2020), 1–8.Suche in Google Scholar
[20] Li, Y.—Du, T.: Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions, J. Egyptian Math. Soc. 24(2) (2016), 175–180.10.1016/j.joems.2015.05.009Suche in Google Scholar
[21] Li, X.—Qaisar, S.—Nasir, J.—Butt, S. I.—Ahmad F.—Bari, M.—Farooq, S. E.: Some results on integral inequalities via Riemann–Liouville fractional integrals, J. Inequal. Appl. 2019 (2019), Art. No. 214.10.1186/s13660-019-2160-1Suche in Google Scholar
[22] Liu, B. Z.: An inequality of Simpson type, Proc. Math. Phys. Eng. Sci. 461 (2005), 2155–2158.10.1098/rspa.2005.1505Suche in Google Scholar
[23] Liu, W.: Some Simpson type inequalities for h-convex and (a,m)-convex functions, J. Comput. Anal. Appl. 16(5) (2014), 1005–1012.Suche in Google Scholar
[24] Luo, C.—Du, T.: Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications, Filomat 34(3) (2020), 751–760.10.2298/FIL2003751LSuche in Google Scholar
[25] Miller, S.—Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, 1993.Suche in Google Scholar
[26] Özdemir, M. E.—Akdemir, A. O.—Kavurmaci, H.: On the Simpson’s inequality for convex functions on the coordinates, Turkish Journal of Analysis and Number Theory 2(5) (2014), 165–169.10.12691/tjant-2-5-2Suche in Google Scholar
[27] Özdemir, M. E.—Yildiz, C.: New inequalities for Hermite-Hadamard and Simpson type with applications, Tamkang J. Math. 44(2) (2013), 209–216.10.5556/j.tkjm.44.2013.1179Suche in Google Scholar
[28] Park, J.: On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci. 7(121) (2013), 6009–6021.10.12988/ams.2013.39498Suche in Google Scholar
[29] Park, J.: On some integral inequalities for twice differentiable quasi-convex and convex functions via fractional integrals, Appl. Math. Sci. 9(62) (2015), 3057–3069.10.12988/ams.2015.53248Suche in Google Scholar
[30] Rashid, S.—Akdemir, A. O.—Jarad, F.—Noor, M. A.—Noor, K. I.: Simpson’s type integral inequalities for k-fractional integrals and their applications, AIMS Math. 4(4) (2019), 1087–1100.10.3934/math.2019.4.1087Suche in Google Scholar
[31] Sarikaya, M. Z.—Aktan, N.: On the generalization of some integral inequalities and their applications, Math. Comput. Modelling 54(9–10) (2011), 2175–2182.10.1016/j.mcm.2011.05.026Suche in Google Scholar
[32] Sarikaya, M. Z.—Set, E.—Özdemir, M. E.: On new inequalities of Simpson’s type for convex functions, RGMIA Res. Rep. Coll. 13(2) (2010).Suche in Google Scholar
[33] Sarikaya, M. Z.—Set, E.—Özdemir, M. E.: On new inequalities of Simpson’s type for s-convex functions, Comput. Math. Appl. 60(8) (2010), 2191–2199.10.1016/j.camwa.2010.07.033Suche in Google Scholar
[34] Sarikaya, M. Z.—Set, E.—Özdemir, M. E.: On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inform. 9(1) (2013), 37–45.10.2478/jamsi-2013-0004Suche in Google Scholar
[35] Sarikaya, M. Z.—Budak, H.—Erden, S.: On new inequalities of Simpson’s type for generalized convex functions, Korean J. Math. 27(2) (2019), 279–295.Suche in Google Scholar
[36] Set, E.—Akdemir, A. O.—Özdemir, M. E.: Simpson type integral inequalities for convex functions via Riemann-Liouville integrals, Filomat 31(14) (2017), 4415–4420.10.2298/FIL1714415SSuche in Google Scholar
[37] Vivas-Cortez, M.—Abdeljawad, T.—Mohammed, P. M.—Rangel-Oliveros, Y.: Simpson’s integral inequalities for twice differentiable convex functions, Math. Probl. Eng. 2020 (2020), Art. ID 1936461.10.1155/2020/1936461Suche in Google Scholar
[38] You, X.—Hezenci, F.—Budak, H.—Kara, H.: New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Math. 7(3) (2021), 3959–3971.10.3934/math.2022218Suche in Google Scholar
© 2023 Mathematical Institute Slovak Academy of Sciences
Artikel in diesem Heft
- Parameters in Inversion Sequences
- On the Pecking Order Between Those of Mitsch and Clifford
- A Note on Cuts of Lattice-Valued Functions and Concept Lattices
- Trigonometric Sums and Riemann Zeta Function
- Notes on the Equation d(n) = d(φ(n)) and Related Inequalities
- Harmony of Asymmetric Variants of the Filbert and Lilbert Matrices in q-form
- Maximal Density and the Kappa Values for the Families {a, a + 1, 2a + 1, n} and {a, a + 1, 2a + 1, 3a + 1, n}
- Extensions in Time Scales Integral Inequalities of Jensen’s Type via Fink’s Identity
- A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions
- Extended Bromwich-Hansen Series
- Iterative Criteria for Oscillation of Third-Order Delay Differential Equations with p-Laplacian Operator
- Vallée-Poussin Theorem for Equations with Caputo Fractional Derivative
- On Oscillatory Behavior of Third Order Half-Linear Delay Differential Equations
- On Existence and Uniqueness of Solutions for Ordinary Differential Equations in Locally Convex Topological Linear Spaces
- Bounds on Blow-Up Time for a Higher-Order Non-Newtonian Filtration Equation
- On a Solvable System of Difference Equations in Terms of Generalized Fibonacci Numbers
- The Smallest and the Largest Families of Some Classes of 𝒜-Continuous Functions
- Type II Exponentiated Half-Logistic Gompertz-G Family of Distributions: Properties and Applications
- Strong Consistency of Least-Squares Estimators in the Simple Linear Errors-in-Variables Regression Model with Widely Orthant Dependent Random Variables
Artikel in diesem Heft
- Parameters in Inversion Sequences
- On the Pecking Order Between Those of Mitsch and Clifford
- A Note on Cuts of Lattice-Valued Functions and Concept Lattices
- Trigonometric Sums and Riemann Zeta Function
- Notes on the Equation d(n) = d(φ(n)) and Related Inequalities
- Harmony of Asymmetric Variants of the Filbert and Lilbert Matrices in q-form
- Maximal Density and the Kappa Values for the Families {a, a + 1, 2a + 1, n} and {a, a + 1, 2a + 1, 3a + 1, n}
- Extensions in Time Scales Integral Inequalities of Jensen’s Type via Fink’s Identity
- A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions
- Extended Bromwich-Hansen Series
- Iterative Criteria for Oscillation of Third-Order Delay Differential Equations with p-Laplacian Operator
- Vallée-Poussin Theorem for Equations with Caputo Fractional Derivative
- On Oscillatory Behavior of Third Order Half-Linear Delay Differential Equations
- On Existence and Uniqueness of Solutions for Ordinary Differential Equations in Locally Convex Topological Linear Spaces
- Bounds on Blow-Up Time for a Higher-Order Non-Newtonian Filtration Equation
- On a Solvable System of Difference Equations in Terms of Generalized Fibonacci Numbers
- The Smallest and the Largest Families of Some Classes of 𝒜-Continuous Functions
- Type II Exponentiated Half-Logistic Gompertz-G Family of Distributions: Properties and Applications
- Strong Consistency of Least-Squares Estimators in the Simple Linear Errors-in-Variables Regression Model with Widely Orthant Dependent Random Variables