Startseite Mathematik Partial actions on convergence spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Partial actions on convergence spaces

  • Nathaniel Adu EMAIL logo , Piotr Mikusiński und Gary Richardson
Veröffentlicht/Copyright: 10. August 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Continuous partial actions and continuous enveloping actions are investigated in the category of convergence spaces. Product and quotient constructions are considered. Further, it is shown that a continuous partial action on a convergence space can be extended to a continuous partial action on a compactification of the convergence space.

MSC 2010: Primary 54A20; 54B15
  1. Dedicated to Professor D.C. Kent and to the memory of Professor Roman Frič

    ( Communicated by L'ubica Holá)

References

[1] ABADIE, F.: Enveloping actions and Takai duality for partial actions, J. Funct. Anal. 197 (2003), 14–67.10.1016/S0022-1236(02)00032-0Suche in Google Scholar

[2] BOUSTIQUE, H.— MIKUSIŃSKI, P.—RICHARDSON, G.: Convergence semigroup actions: generalized quotients, Appl. Gen. Topol. 10 (2009), 173–186.10.4995/agt.2009.1731Suche in Google Scholar

[3] BOUSTIQUE, H.—MIKUSIŃSKI, P.—RICHARDSON, G.: Convergence semigroup categories, Appl. Gen. Topol. 11 (2010), 67–88.Suche in Google Scholar

[4] COLEBUNDERS, E.—BOUSTIQUE, H.—MIKUSIŃSKI, P.—RICHARDSON, G.: Convergence approach spaces: actions, Appl. Categ. Structures 24 (2016), 147–161.10.1007/s10485-015-9390-2Suche in Google Scholar

[5] DE VRIES, J.: Topological Transformation Groups 1: A Categorical Approach. Mathematical Centre Tracts 65, Mathematisch Centrum, Amsterdam, 1975.Suche in Google Scholar

[6] FRIČ, R.—MCKENNON, K.—RICHARDSON, G.: Sequential Convergence in C(X). Convergence Structures and Applications to Analysis, Akademie-Verlag, Berlin, 1980, 57–65.Suche in Google Scholar

[7] KATSEVICH, A.—MIKUSIŃSKI, P.: On De Graaf spaces of pseudoquotients, Rocky Mountain J. Math. 45 (2015), 1445–1455.10.1216/RMJ-2015-45-5-1445Suche in Google Scholar

[8] KENT, D. C.—RICHARDSON, G.: Locally compact convergence spaces, Michigan Math. J. 22 (1975), 353–360.10.1307/mmj/1029001576Suche in Google Scholar

[9] KENT, D. C.—RICHARDSON, G.: Some product theorems for convergence spaces, Math. Nachr. 87 (1979), 43–51.10.1002/mana.19790870106Suche in Google Scholar

[10] MEGRELISHVILI, M.—SCARR, T.: Constructing Tychonoff G-spaces which are not G-Tychonoff, Special issue on topological groups, Topology Appl. 86 (1998), 69–81.10.1016/S0166-8641(97)00125-9Suche in Google Scholar

[11] MIKUSIŃSKI, P.: Generalized quotients with applications in analysis, Methods Appl. Anal. 10 (2003), 377–386.10.4310/MAA.2003.v10.n3.a4Suche in Google Scholar

Received: 2021-04-12
Accepted: 2021-07-02
Published Online: 2022-08-10
Published in Print: 2022-08-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0070/pdf
Button zum nach oben scrollen