Home On extensions of bilinear maps
Article
Licensed
Unlicensed Requires Authentication

On extensions of bilinear maps

  • Carlos S. Kubrusly
Published/Copyright: August 9, 2022
Become an author with De Gruyter Brill

Abstract

The paper deals with extension of bounded bilinear maps. It gives a necessary and sufficient condition for extending a bounded bilinear map on the Cartesian product of subspaces of Banach spaces. This leads to a full characterization for extension of bounded bilinear maps on the Cartesian product of arbitrary subspaces of Hilbert spaces. Applications concerning projective tensor products are also investigated.

MSC 2010: 47A07; 46A22; 46M05; 54C20
  1. ( Communicated by Emanuel Chetcuti )

References

[1] BOWERS, A.: Representation of extendable bilinear forms, Math. Slovaca 60 (2015), 1123-1136.10.1515/ms-2015-0077Search in Google Scholar

[2] CARANDO, D.—SEVILLA-PERIS, P.: Extendibility of bilinear forms on Banach sequence spaces, Israel J. of Math. 199 (2014), 941-954.10.1007/s11856-014-0003-9Search in Google Scholar

[3] CASTILLO, J. M. F.—GARCIA, R.—DEFANT, A.—PÉREZ-GARCÌA, D.—SUÀREZ, J.: Local complementation and the extension of bilinear mappings, Math. Proc. Camb. Phil. Soc. 152 (2012), 132—166.10.1017/S0305004111000533Search in Google Scholar

[4] CASTILLO, J. M. F.—GARCIA, R.—JARAMILLO, J. A.: Extension of bilinear forms on Banach spaces, Proc. Amer. Math. Soc. 129 (2001), 3647-3656.10.1090/S0002-9939-01-05986-XSearch in Google Scholar

[5] CASTILLO, J. M. F.—GARCIA, R.—JARAMILLO, J. A.: Extension of bilinear forms from subspaces ofC-i-spaces, Ann. Acad. Sci. Fenn. Math. 27(2) (2002), 91-96.Search in Google Scholar

[6] DEFANT, A.—FLORET, K.: Tensor Norms and Operator Ideals, North-Holland, Amsterdam, 1993.Search in Google Scholar

[7] DEFANT, A.—GARCIA, D.—MAESTRE, M.—PÉREZ-GARCÌA, D.: Extension of multilinear forms andpolynomials from subspaces of C\-space, Houston J. Math. 33 (2007), 839—860.Search in Google Scholar

[8] DIESTEL, J.—FOURIE, J. H.—SWART, J.: The Metric Theory of Tensor Products - Grothendieck’s R´esum´e Revisited, American Mathematical Society, Providence, 2008.10.1090/mbk/052Search in Google Scholar

[9] HAYDEN, T. L.: The extension of bilinear functionals, Pacific J. Math. 22 (1967), 99-108.10.2140/pjm.1967.22.99Search in Google Scholar

[10] JARCHOW, H.: Locally Convex Spacs, B.G. Teubner, Stuttgart, 1981.10.1007/978-3-322-90559-8Search in Google Scholar

[11] JARCHOW, H.—PALAZUELOS, C.—PÉREZ-GARCÌA, D.—VILLANUEVA, I.: Hahn-Banach extension ofmultilinear forms and summability, J. Math. Anal. Appi. 336 (2007), 1161—1177.10.1016/j.jmaa.2007.03.057Search in Google Scholar

[12] KALTON, N. J.: The complemented subspace problem revisited, Studia Math. 188 (2008), 223–257.10.4064/sm188-3-2Search in Google Scholar

[13] KUBRUSLY, C. S.: Range-kernel complementation, Studia Sci. Math. Hungar. 55 (2018), 327–344.10.1556/012.2018.55.3.1402Search in Google Scholar

[14] KUBRUSLY, C. S.: Spectral Theory of Bounded Linear Operators, Birkh¨auser-Springer-Switzerland, Cham, 2020.10.1007/978-3-030-33149-8Search in Google Scholar

[15] KUBRUSLY, C. S.: Algebraic tensor products revisited: Axiomatic approach, Bull. Malays. Math. Sci. Soc. 44 (2021), 2335–2355.10.1007/s40840-020-01060-0Search in Google Scholar

[16] LINDENSTRAUSS, J.—TZAFRIRI, L.: On the complemented subspaces problem, Israel J. Math. 9 (1971), 263–269.10.1007/BF02771592Search in Google Scholar

[17] MEGGINSON, R. E.: An Introduction to Banach Space Theory, Springer, New York, 1998.10.1007/978-1-4612-0603-3Search in Google Scholar

[18] RYAN, R. A.: Introduction to Tensor Products of Banach Spaces, Springer, London, 2002.10.1007/978-1-4471-3903-4Search in Google Scholar

Received: 2021-04-25
Accepted: 2021-08-26
Published Online: 2022-08-09
Published in Print: 2022-08-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0066/html
Scroll to top button