Abstract
Let 𝓗 be a complex Hilbert space and A be a non-zero positive bounded linear operator on 𝓗. The main aim of this paper is to discuss a general method to develop A-operator seminorm and A-numerical radius inequalities of semi-Hilbertian space operators using the existing corresponding inequalities of bounded linear operators on 𝓗. Among many other inequalities we prove that if S, T, X ∈ 𝓑A(𝓗), i.e., if A-adjoint of S, T, X exist, then
Further, we prove that if T ∈ 𝓑A(𝓗), then
Here wA(⋅), cA(⋅) and ∥⋅∥A denote A-numerical radius, A-Crawford number and A-operator seminorm, respectively.
-
( Communicated by Michal Zajac )
References
[1] ARIAS, M. L.—CORACH, G.—GONZALEZ, M. C.: Lifting properties in operator ranges, Acta Sci. Math. (Szeged) 75 (2009), 635–653.Search in Google Scholar
[2] ARIAS, M. L.—CORACH, G.—GONZALEZ, M. C.: Partial isometries in semi-Hilbertian spaces, Linear Algebra Appl. 428 (2008), 1460–1475.10.1016/j.laa.2007.09.031Search in Google Scholar
[3] BAG, S.—BHUNIA, P.—PAUL, K.: Bounds of numerical radius of bounded linear operator using t-Aluthge transform, Math. Inequal. Appl. 23(3) (2020), 991–1004.10.7153/mia-2020-23-76Search in Google Scholar
[4] BHATIA, R.—DAVIS, C.: More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14 (1993), 132–136.10.1137/0614012Search in Google Scholar
[5] BHUNIA, P.—FEKI, K.—PAUL, K.: A-numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications, Bull. Iranian Math. Soc. 47 (2021), 435–457.10.1007/s41980-020-00392-8Search in Google Scholar
[6] BHUNIA, P.—NAYAK, R. K.—PAUL, K.: Improvement of A-numerical radius inequalities of semi-Hilbertian space operators, Results Math. 76 (2021), Art. No. 120.10.1007/s00025-021-01439-wSearch in Google Scholar
[7] BHUNIA, P.—NAYAK, R. K.—PAUL, K.: Refinements of A-numerical radius inequalities and their applications, Adv. Oper. Theory 5 (2020), 1498–1511.10.1007/s43036-020-00056-8Search in Google Scholar
[8] BHUNIA, P.—PAUL, K.: Refinements of norm and numerical radius inequalities, Rocky Mountain J. Math. 51(6) (2021), 1953–1965.10.1216/rmj.2021.51.1953Search in Google Scholar
[9] BHUNIA, P.—PAUL, K.: Furtherance of numerical radius inequalities of Hilbert space operators, Arch. Math. 117(5) (2021), 537–546.10.1007/s00013-021-01641-wSearch in Google Scholar
[10] BHUNIA, P.—PAUL, K.: Some improvement of numerical radius inequalities of operators and operator matrices, Linear Multilinear Algebra 70(10) (2022), 1995–2013.10.1080/03081087.2020.1781037Search in Google Scholar
[11] BHUNIA, P.—PAUL, K.—NAYAK, R. K.: On inequalities for A-numerical radius of operators, Electron. J. Linear Algebra 36 (2020), 143–157.Search in Google Scholar
[12] BRANGES, L. D.—ROVNYAK, J.: Square Summable Power Series, New York, Holt, Rinehart and Winston, 1966.Search in Google Scholar
[13] DOUGLAS, R. G.: On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–416.10.1090/S0002-9939-1966-0203464-1Search in Google Scholar
[14] DRAGOMIR, S. S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5(18) (2009), 269–278.10.5644/SJM.05.2.10Search in Google Scholar
[15] FEKI, K.: Spectral radius of semi-Hilbertian space operators and its applications, Ann. Funct. Anal. 11 (2020), 929–946.10.1007/s43034-020-00064-ySearch in Google Scholar
[16] FEKI, K.: A note on the A-numerical radius of operators in semi-Hilbert spaces, Arch. Math. 115 (2020), 535–544.10.1007/s00013-020-01482-zSearch in Google Scholar
[17] FEKI, K.: On tuples of commuting operators in positive semidefinite inner product spaces, Linear Algebra Appl. 603 (2020), 313–328.10.1016/j.laa.2020.06.015Search in Google Scholar
[18] GONZALEZ, M. C.: Operator norm inequalities in semi-Hilbertian spaces, Linear Algebra Appl. 434 (2011), 370–378.10.1016/j.laa.2010.08.034Search in Google Scholar
[19] MAJDAK, M.—SECELEAN, N. A.—SUCIU, L.: Ergodic properties of operators in some semi-Hilbertian spaces, Linear Multilinear Algebra 61(2) (2013), 139–159.10.1080/03081087.2012.667094Search in Google Scholar
[20] MANUILOV, V.—MOSLEHIAN, M. S.—XU, Q.: Douglas factorization theorem revisited, Proc. Amer. Math. Soc. 148 (2020), 1139–1151.10.1090/proc/14757Search in Google Scholar
[21] MOSLEHIAN, M. S.—KIAN, M.—XU, Q.: Positivity of 2 × 2 block matrices of operators, Banach J. Math. Anal. 13(3) (2019), 726–743.10.1215/17358787-2019-0019Search in Google Scholar
[22] MOSLEHIAN, M. S.—XU, Q.—ZAMANI, A.: Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl. 591 (2020), 299–321.10.1016/j.laa.2020.01.015Search in Google Scholar
[23] ROUT, N. C.—SAHOO, S.—MISHRA, D.: Some A-numerical radius inequalities for semi-Hilbertian space operators, Linear Multilinear Algebra 69(5) (2021), 980–996.10.1080/03081087.2020.1774487Search in Google Scholar
[24] ZAMANI, A.: A-numerical radius inequalities for semi-Hilbertian space operators, Linear Algebra Appl. 578 (2019), 159–183.10.1016/j.laa.2019.05.012Search in Google Scholar
© 2022 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Regular Papers
- Variants of Booleanness: Congruences of a partial frame versus those of its free frame
- Models, coproducts and exchangeability: Notes on states on Baire functions
- Inverse tangent series involving pell and pell-lucas polynomials
- A new family of two-variable polynomials based on hermite polynomials
- Decreasing property and complete monotonicity of two functions constituted via three derivatives of a function involving trigamma function
- On the solvability of a fourth-order differential evolution equation on singular cylindrical domain in R4
- Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition
- Stability criteria for systems of two first-order linear ordinary differential equations
- A perturbed eigenvalue problem in exterior domain
- On extensions of bilinear maps
- Refinement of seminorm and numerical radius inequalities of semi-Hilbertian space operators
- Weighted composition operators from the Besov space into nth weighted type spaces
- Fuzzy ideal topological vector spaces
- Partial actions on convergence spaces
- On quasi-small loop groups
- Topologies generated by symmetric porosity on normed spaces
- The Alpha Power Rayleigh-G family of distributions
- An alternative for Laplace Birnbaum-Saunders distribution
- Existence of positive solutions for boundary value problems with p-Laplacian operator
Articles in the same Issue
- Regular Papers
- Variants of Booleanness: Congruences of a partial frame versus those of its free frame
- Models, coproducts and exchangeability: Notes on states on Baire functions
- Inverse tangent series involving pell and pell-lucas polynomials
- A new family of two-variable polynomials based on hermite polynomials
- Decreasing property and complete monotonicity of two functions constituted via three derivatives of a function involving trigamma function
- On the solvability of a fourth-order differential evolution equation on singular cylindrical domain in R4
- Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition
- Stability criteria for systems of two first-order linear ordinary differential equations
- A perturbed eigenvalue problem in exterior domain
- On extensions of bilinear maps
- Refinement of seminorm and numerical radius inequalities of semi-Hilbertian space operators
- Weighted composition operators from the Besov space into nth weighted type spaces
- Fuzzy ideal topological vector spaces
- Partial actions on convergence spaces
- On quasi-small loop groups
- Topologies generated by symmetric porosity on normed spaces
- The Alpha Power Rayleigh-G family of distributions
- An alternative for Laplace Birnbaum-Saunders distribution
- Existence of positive solutions for boundary value problems with p-Laplacian operator