Startseite Mathematik A Study on statistical versions of convergence of sequences of functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A Study on statistical versions of convergence of sequences of functions

  • Samiran Das und Argha Ghosh EMAIL logo
Veröffentlicht/Copyright: 28. März 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce and study statistical versions of recently introduced concepts of semi-α convergence, semi exhaustiveness and semi uniform convergence of sequences of functions between metric spaces. We prove some basic results and establish a connection between them. Also, we give some examples to ensure deviation of established notions.

MSC 2010: Primary 40G15; 26A03

Samiran Das is grateful to the Council of Scientific and Industrial Research, India for his fellowships’ funding under CSIR-JRF (SRF) scheme during the preparation of this paper


Acknowledgement

We are thankful to the referee for some valuable suggestions which improved the quality and presentation of the paper substantially.

  1. (Communicated by Gregor Dolinar )

References

[1] Arens, R. F.: A topology for spaces of transformations, Ann. of Math. 47(3) (1946), 480–495.10.2307/1969087Suche in Google Scholar

[2] Carathéodory, C.: Stetige Konvergenz und normale Familien von Funktionen, Math. Ann. 101 (1929), 515–533.10.1007/BF01454857Suche in Google Scholar

[3] Caserta, A.—Kočinac, L. D. R.: On statistical exhaustiveness, Appl. Math. Lett. 25 (2012), 1447–1451.10.1016/j.aml.2011.12.022Suche in Google Scholar

[4] Caserta, A.—Di Maio, G.—Kočinac, L. D. R.: Statistical convergence in function spaces, Abstr. Appl. Anal. 2011 (2011), Art. ID 420419.10.1155/2011/420419Suche in Google Scholar

[5] Connor, J.: R-type summability methods, Cauchy criteria, P-sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319–327.10.1090/S0002-9939-1992-1095221-7Suche in Google Scholar

[6] Connor, J.: The statistical and strong P-Cesaro convergence of sequences, Analysis 8 (1988), 47–63.10.1524/anly.1988.8.12.47Suche in Google Scholar

[7] Connor, J.—Grosse-Erdmann, K. G.: Sequential definitions of continuity for real functions, Rocky Mountain J. Math. 33 (2003), 93–121.10.1216/rmjm/1181069988Suche in Google Scholar

[8] Das, R.—Papanastassiou, N.: Some types of convergence of sequences of real valued functions, Real Anal. Exchange 28(2) (2002/2003), 1–16.10.14321/realanalexch.28.2.0481Suche in Google Scholar

[9] Ewert, J.: Almost uniform convergence, Period. Math. Hung. 26(1) (1993), 77–84.10.1007/BF01875883Suche in Google Scholar

[10] Fast, H.: Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.10.4064/cm-2-3-4-241-244Suche in Google Scholar

[11] Fridy, J. A.: On statistical convergence, Analysis 5 (1985), 301–313.10.1524/anly.1985.5.4.301Suche in Google Scholar

[12] Fridy, J. A.: Statistical limit points, Proc. Amer. Math. Soc. 118(4) (1993), 1187–1192.10.1090/S0002-9939-1993-1181163-6Suche in Google Scholar

[13] Gökhan, A.—Güngör, M.: On pointwise statistical convergence, Indian J. Pure Appl. Math. 33(9) (2002), 1379–1384.Suche in Google Scholar

[14] Güngör, M.—Gökhan, A.: On uniform statistical convergence, Int. J. Pure Appl. Math. 19(1) (2005), 17–24.Suche in Google Scholar

[15] Gregoriades, G.—Papanastassiou, N.: A notion of exhaustiveness and Ascoli-type theorems, Topol. Appl. 155 (2008), 1111–1128.10.1016/j.topol.2008.02.005Suche in Google Scholar

[16] Hahn, H.: Reelle Funktionen, Chelsea, New York, 1948.Suche in Google Scholar

[17] Di Maio, G.—Kočinac, L. D. R.: Statistical convergence in topology, Topol. Appl. 156 (2008), 28–45.10.1016/j.topol.2008.01.015Suche in Google Scholar

[18] Megaritis, A. C.: Ideal convergence of nets of functions with values in uniform spaces, Filomat 31(20) (2017), 6281–6292.10.2298/FIL1720281MSuche in Google Scholar

[19] Papanastassiou, N.: A note on convergence of sequences of functions, Topol. Appl. 275 (2020), Art. ID 107017.10.1016/j.topol.2019.107017Suche in Google Scholar

[20] Šalát, T.: On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.Suche in Google Scholar

[21] Steinhus, H.: Sur la convergence ordinatre et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74.Suche in Google Scholar

[22] Stoilov, S.: Continuous convergence, Rev. Math. Pures Appl. 4 (1959), 341–344.Suche in Google Scholar

Received: 2020-10-28
Accepted: 2021-04-03
Published Online: 2022-03-28
Published in Print: 2022-04-26

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0030/pdf
Button zum nach oben scrollen