Startseite Mathematik Congruence pairs of principal MS-algebras and perfect extensions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Congruence pairs of principal MS-algebras and perfect extensions

  • Abd El-Mohsen Badawy , Miroslav Haviar EMAIL logo und Miroslav Ploščica
Veröffentlicht/Copyright: 10. Dezember 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The notion of a congruence pair for principal MS-algebras, simpler than the one given by Beazer for K2-algebras [6], is introduced. It is proved that the congruences of the principal MS-algebras L correspond to the MS-congruence pairs on simpler substructures L°° and D(L) of L that were associated to L in [4].

An analogy of a well-known Grätzer’s problem [11: Problem 57] formulated for distributive p-algebras, which asks for a characterization of the congruence lattices in terms of the congruence pairs, is presented here for the principal MS-algebras (Problem 1). Unlike a recent solution to such a problem for the principal p-algebras in [2], it is demonstrated here on the class of principal MS-algebras, that a possible solution to the problem, though not very descriptive, can be simple and elegant.

As a step to a more descriptive solution of Problem 1, a special case is then considered when a principal MS-algebra L is a perfect extension of its greatest Stone subalgebra LS. It is shown that this is exactly when de Morgan subalgebra L°° of L is a perfect extension of the Boolean algebra B(L). Two examples illustrating when this special case happens and when it does not are presented.


The second author acknowledges support from Slovak grant VEGA 1/0337/16. The third author has been supported by VEGA grant 1/0097/18

See Remark 1.


  1. Dedicated to the memory of Professor Beloslav Riečan

  2. Communicated by Anatolij Dvurečenskij

References

[1] Badawy, A.: dL-Filters of principal MS-algebras, J. Egyptian Math. Soc. 23 (2015), 463–469.10.1016/j.joems.2014.12.008Suche in Google Scholar

[2] Badawy, A.: Characterization of the congruence lattices of principal p-algebras, Math. Slovaca 67 (2017), 803–810.10.1515/ms-2017-0011Suche in Google Scholar

[3] Badawy, A.—Atallah, M.: MS-intervals of an MS-algebra, Hacet. J. Math. Stat. 48 (2019), 1479–1487.10.15672/HJMS.2018.590Suche in Google Scholar

[4] Badawy, A.—Guffová, D.—Haviar, M.: Triple construction of decomposable MS-algebras, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 51 (2012), 53–65.Suche in Google Scholar

[5] Badawy, A.—Shum, P.K.: Congruence pairs of principal p-algebras, Math. Slovaca 67 (2017), 263–270.10.1515/ms-2016-0265Suche in Google Scholar

[6] Beazer, R.: Congruence pairs for algebras abstracting Kleene and Stone algebras, Czechoslovak Math. J. 35 (1985), 260–268.10.21136/CMJ.1985.102014Suche in Google Scholar

[7] Blyth, T.—Varlet, J.: On a common abstraction of de Morgan algebras and Stone algebras, Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), 301–308.10.1017/S0308210500015663Suche in Google Scholar

[8] Blyth, T.—Varlet, J.: Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 157–169.10.1017/S0308210500015869Suche in Google Scholar

[9] Blyth, T.—Varlet, J.: Ockham Algebras, Oxford University Press, 1994.10.1093/oso/9780198599388.001.0001Suche in Google Scholar

[10] El-Assar, S.: Two notes on the congruence lattice of the p-algebras, Acta Math. Univ. Comenian. XLVI–XLVII (1985), 13–19.Suche in Google Scholar

[11] Grätzer, G.: Lattice Theory. First Concepts and Distributive Lattices, Freeman, San Francisco, California, 1971.Suche in Google Scholar

[12] Grätzer, G.—Wehrung, F.: Proper congruence-preserving extensions of lattices, Acta Math. Hungar. 85 (1999), 169–179.10.1023/A:1006693517705Suche in Google Scholar

[13] Haviar, M.: On certain construction of MS-algebras, Port. Math. 51 (1994), 71–83.Suche in Google Scholar

[14] Haviar, M.: Construction and affine completeness of principal p-algebras, Tatra Mt. Math. Publ. 5 (1995), 217–228.Suche in Google Scholar

[15] Katriňák, T.: On a problem of G. Grätzer, Proc. Amer. Math. Soc. 57 (1976), 19–24.10.1090/S0002-9939-1976-0401593-7Suche in Google Scholar

[16] Katriňák, T.: p-Algebras. Contributions to Lattice Theory (Szeged 1980), Colloq. Math. Soc. Janos Bolyai 33 (1983), 549–573.Suche in Google Scholar

[17] Ribenboim, P.: Characterization of the sup-complement in a distributive latttice with last element, Summa Brasil. Math. 2 (1949), 43–49.Suche in Google Scholar

[18] Riečan, B.: K axiomatike modulárnych zväzov [On axiomatic of modular lattices], Acta Fac. Rerum Natur. Univ. Comenian. Math. J. 2 (1957), 257–262 (in Slovak).Suche in Google Scholar

[19] Varlet, J.: A strengthening of the notion of essential extension, Soc. Roy. Sci Liege 48 (1979), 432–437.Suche in Google Scholar

Received: 2019-12-20
Accepted: 2020-03-03
Published Online: 2020-12-10
Published in Print: 2020-12-16

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0430/html
Button zum nach oben scrollen