Home Mathematics The lattices of ๐”-fuzzy state filters in state residuated lattices
Article
Licensed
Unlicensed Requires Authentication

The lattices of ๐”-fuzzy state filters in state residuated lattices

  • Pengfei He , Juntao Wang and Jiang Yang EMAIL logo
Published/Copyright: December 10, 2020
Become an author with De Gruyter Brill

Abstract

In the paper, we introduce ๐”-fuzzy state filters in state residuated lattices and investigate their related properties, where ๐” is a complete Heyting algebra. Moreover, we study the ๐”-fuzzy state co-annihilator of an ๐”-fuzzy set with respect to an ๐”-fuzzy state filter. Finally, using the ๐”-fuzzy state co-annihilator, we investigate lattice structures of the set of some types of ๐”-fuzzy state filters in state residuated lattices. In particular, we prove that: (1) the set FSF[L] of all ๐”-fuzzy state filters is a complete Heyting algebra; (2) the set SฮฝFSF[L] of all stable state filters relative to an ๐”-fuzzy set ฮฝ is also a complete Heyting algebra; (3) the set IฮผFSF[L] of all involutory ๐”-fuzzy state filters relative to an ๐”-fuzzy state filter ฮผ is a complete Boolean algebra.


This work is supported by the National Natural Science Foundation of China (11901371,12001423,11601302), the Postdoctoral Science Foundation of China (2019M663919XB, 2016M602761), Natural Science Foundation of Shaanxi Province (2019JQ-816, 2019JQ-472), and Natural Science Foundation of Education Committee of Shannxi Province (19JK0653) and the Fundamental Research Funds for the Central Universities (GK202003003).


  1. (Anatolij Dvureฤenskij )

References

[1] Bahls, P.โ€”Cole, J.โ€”Jipsen, P.โ€”Tsinakis, C.: Cancellative residuated lattices, Algebra Universalis 50 (2003), 83โ€“106.10.1007/s00012-003-1822-4Search in Google Scholar

[2] Blount, K.โ€”Tsinakis, C.: The structure of residuated lattices, Internat. J. Algebra Comput. 13 (2003), 437โ€“461.10.1142/S0218196703001511Search in Google Scholar

[3] Blyth, T. S.: Lattices and Ordered Algebraic Structures, Springer, London, 2005.Search in Google Scholar

[4] Chang, C. C.: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467โ€“490.10.1090/S0002-9947-1958-0094302-9Search in Google Scholar

[5] Ciungu, L. C.: Bosbach and Rieฤan states on residuated lattices, J. Appl. Funct. Anal. 2 (2008), 175โ€“188.Search in Google Scholar

[6] Ciungu, L.C.โ€”Dvureฤenskij, A.โ€”Hyฤko, M.: State BL-algebras, Soft Comput. 15 (2011), 619โ€“634.10.1007/s00500-010-0571-5Search in Google Scholar

[7] Dvureฤenskij, A.โ€”Rachลฏnek, J.โ€”ล alounovรก, D.: State operators on generalizations of fuzzy structures, Fuzzy Sets and Systems 187 (2012), 58โ€“76.10.1016/j.fss.2011.05.023Search in Google Scholar

[8] Esteva, F.โ€”Godo, L.: Monoidal t-norm-based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124 (2001), 271โ€“288.10.1016/S0165-0114(01)00098-7Search in Google Scholar

[9] Flaminio, T.โ€”Montagna, F.: MV-algebras with internal states and probabilistic fuzzy logic, Internat. J. Approx. Reason 50 (2009), 138โ€“152.10.1016/j.ijar.2008.07.006Search in Google Scholar

[10] Galatos, N.โ€”Jipsen, P.โ€”Kowalski, T.โ€”Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, Tokyo, 2007.Search in Google Scholar

[11] Georgescu, G.: Bosbach states on fuzzy structures, Soft Comput. 8 (2004), 217โ€“230.10.1007/s00500-003-0266-2Search in Google Scholar

[12] H รกjek, P.: Metamathematics of Fuzzy Logic, Kluwer, Dordrecht, 1998.10.1007/978-94-011-5300-3Search in Google Scholar

[13] He, P. F.โ€”Xin, X. L.โ€”Yang, Y. W.: On state residuated lattices, Soft Comput. 19 (2015), 2083โ€“2094.10.1007/s00500-015-1620-xSearch in Google Scholar

[14] Kowalski, T.โ€”Ono, H.: Residuated Lattices: An Algebraic Glimpse at Logic without Contraction. Studies in Logic, Elsevier, 2001.Search in Google Scholar

[15] Jipsen, P.โ€”Tsinakis, C.: A survey of residuated lattices. In: Ordered Algebraic Structures, J. Martinez, Eds., Kluwer, Dordrecht, 2002, pp. 19โ€“56.10.1007/978-1-4757-3627-4_3Search in Google Scholar

[16] Jun, Y. B.โ€”Xu, Y.โ€”Zhang, X. H.: Fuzzy filters of MTL-algebras, Inform Sci. 175 (2005), 120โ€“138.10.1016/j.ins.2004.11.004Search in Google Scholar

[17] Liu, L. Z.: On the existence of states on MTL-algebras, Inform. Sci. 220 (2013), 559โ€“567.10.1016/j.ins.2012.07.046Search in Google Scholar

[18] Liu, L. Z.โ€”Li, K. T.: Fuzzy filters of BL-algebras, Inform Sci. 173 (2005), 141โ€“154.10.1016/j.ins.2004.07.009Search in Google Scholar

[19] Liu, L. Z.โ€”Li, K. T.: Boolean filters and positive implicative filters of residuated lattices, Inform Sci. 177 (2007), 5725โ€“5738.10.1016/j.ins.2007.07.014Search in Google Scholar

[20] Liu, L. Z.โ€”Li, K. T.: Fuzzy Boolean and positive implicative filters of BL-algebras, Fuzzy Sets and Systems 152 (2005), 333โ€“348.10.1016/j.fss.2004.10.005Search in Google Scholar

[21] Liu, L. Z.โ€”Zhang, X. Y.: States onR0-algebras, Soft Comput. 12 (2008), 1099โ€“1104.10.1007/s00500-008-0276-1Search in Google Scholar

[22] Ma, Z. M.: Two types of MTL-L-filters in residuated lattices, J. Intell. Fuzzy Syst. 27 (2014), 681โ€“689.10.3233/IFS-131026Search in Google Scholar

[23] Ma, Z. M.: Lattices of (generalized) fuzzy filters in residuated lattices, J. Intell. Fuzzy Syst. 27 (2014), 2281โ€“2287.10.3233/IFS-141191Search in Google Scholar

[24] Ma, Z. M.โ€”Hu, B. Q.: Characterizations and new subclasses ofI-filters in residuated lattices, Fuzzy Sets and Systems 247 (2014), 92โ€“107.10.1016/j.fss.2013.11.009Search in Google Scholar

[25] Ma, Z. M.โ€”Yang, W.: Hybrid generalized Bosbach and Rieฤan states on non-commutative residuated lattices, Int. J. Gen. Syst 45 (2016), 1โ€“23.10.1080/03081079.2015.1110579Search in Google Scholar

[26] Mertanen, J.โ€”Turunen, E.: States on semi-divisible generalized residuated lattices reduce to states on MV-algebras, Fuzzy Sets and Systems 159 (2008), 3051โ€“3064.10.1016/j.fss.2008.01.036Search in Google Scholar

[27] Kondo, M.โ€”Dudek, W. A.: Filter theory of BL-algebras, Soft Comput. 12 (2008), 419โ€“423.10.1007/s00500-007-0178-7Search in Google Scholar

[28] Mundici, D.: Averaging the truth-value in ลukasiewicz sentential logic, Studia Logica 55 (1995), 113โ€“127.10.1007/BF01053035Search in Google Scholar

[29] Rasouli, S.โ€”Davvaz, B.: Rough filters based on residuated lattices, Knowledge and Information Systems 58 (2019), 399โ€“424.10.1007/s10115-018-1219-5Search in Google Scholar

[30] Rieฤan, B.: On the probability on BL-algebras, Acta Math. Nitra 4 (2000), 3โ€“13.10.1007/s005000050082Search in Google Scholar

[31] Turunen, E.โ€”Mertanen, J.: States on semi-divisible residuated lattices, Soft Comput. 12 (2008), 353โ€“357.10.1007/s00500-007-0182-ySearch in Google Scholar

[32] Ward, M.โ€”Dilworth, P. R.: Residuated lattice, Trans. Amer. Math. Soc. 45 (1939), 335โ€“354.10.1007/978-1-4899-3558-8_32Search in Google Scholar

[33] Wang, W.โ€”Xin, X. L.: On fuzzy filters of pseudo BL-algebras, Fuzzy Sets and Systems 162 (2011), 27โ€“38.10.1016/j.fss.2010.09.006Search in Google Scholar

[34] Wang, Z. D.โ€”Fang, J. X.: Onv-filters and normalv-filters of a residuated lattice with a weakvt-operator, Inform Sci. 178 (2008), 3465โ€“3473.10.1016/j.ins.2008.04.003Search in Google Scholar

[35] Zhang, X. H.โ€”Zhou, H. J.โ€”Mao, X. Y.: IMTL(MV)-filters and fuzzy IMTL(MV)-filters of residuated lattices, J. Intell. Fuzzy Syst. 26 (2014), 589โ€“596.10.3233/IFS-120752Search in Google Scholar

[36] Zhu, Y. Q.โ€”Xu, Y.: On filter theory of residuated lattices, Inform. Sci. 180 (2010), 3614โ€“3632.10.1016/j.ins.2010.05.034Search in Google Scholar

Received: 2020-02-08
Accepted: 2020-03-24
Published Online: 2020-12-10
Published in Print: 2020-12-16

ยฉ 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0432/html
Scroll to top button