Home Mathematics Computation of several Hessenberg determinants
Article
Licensed
Unlicensed Requires Authentication

Computation of several Hessenberg determinants

  • Feng Qi EMAIL logo , Omran Kouba and Issam Kaddoura
Published/Copyright: December 10, 2020
Become an author with De Gruyter Brill

Abstract

In the paper, employing methods and techniques in analysis and linear algebra, the authors find a simple formula for computing an interesting Hessenberg determinant whose elements are products of binomial coefficients and falling factorials, derive explicit formulas for computing some special Hessenberg and tridiagonal determinants, and alternatively and simply recover some known results.

  1. (Communicated by Tomasz Natkaniec )

    Dedicated to people facing and fighting 2019-nCoV

References

[1] Anderson, G.-D.—Vamanamurthy, M.-K.—Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, New York, 1997.Search in Google Scholar

[2] Bernstein, D. S.: Scalar, Vector, and Matrix Mathematics: Theory, Facts, and Formulas, revised and expanded edition, Princeton University Press, Princeton, NJ, 2018.10.1515/9781400888252Search in Google Scholar

[3] Bourbaki, N.: Functions of a Real Variable, Elementary Theory. Elements of Mathematics, translated from the 1976 French original by Philip Spain, (Berlin), Springer-Verlag, Berlin, 2004.Search in Google Scholar

[4] Chen, C.-P.: Complete monotonicity and logarithmically complete monotonicity properties for the gamma and psi functions, J. Math. Anal. Appl. 336 (2007), 812–822.10.1016/j.jmaa.2007.03.028Search in Google Scholar

[5] Chen, C.-P.—Choi, J.: Inequalities and complete monotonicity for the gamma and related functions, Commun. Korean Math. Soc. 34(4) (2019), 1261–1278.Search in Google Scholar

[6] Cigler, J: Some observations about determinants which are connected with Catalan numbers and related topics, arXiv prepint (2019),Search in Google Scholar

[7] Hardy, G. H.—Littlewood, J. E.—Pólya, G.: Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952.Search in Google Scholar

[8] Lang, S.: Complex Analysis, 4th ed, Graduate Texts in Mathematics 103, Springer-Verlag, New York, 1999.10.1007/978-1-4757-3083-8Search in Google Scholar

[9] Qi, F.: A determinantal representation for derangement numbers, Glob. J. Math. Anal. 4(3) (2016), 17–17.10.14419/gjma.v4i3.6574Search in Google Scholar

[10] Qi, F.: Derivatives of tangent function and tangent numbers, Appl. Math. Comput. 268 (2015), 844–858.10.1016/j.amc.2015.06.123Search in Google Scholar

[11] Qi, F.: Determinantal expressions and recurrence relations for Fubini and Eulerian polynomials, J. Interdiscip. Math. 22(3) (2019), 317–335.10.1080/09720502.2019.1624063Search in Google Scholar

[12] Qi, F.—Čerňanová, V.—Semenov, Y. S.: Some tridiagonal determinants related to central Delannoy numbers, the Chebyshev polynomials, and the Fibonacci polynomials, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 81(1) (2019), 123–136.Search in Google Scholar

[13] Qi, F.—Čerňanová, V.—Shi, X.-T.—Guo, B.-N.: Some properties of central Delannoy numbers, J. Comput. Appl. Math. 328 (2018), 101–115.10.1016/j.cam.2017.07.013Search in Google Scholar

[14] Qi, F.—Chapman, R. J.: Two closed forms for the Bernoulli polynomials, J. Number Theory 159 (2016), 89–100;10.1016/j.jnt.2015.07.021Search in Google Scholar

[15] Qi, F.—Chen, S.-X.: Complete monotonicity of the logarithmic mean, Math. Inequal. Appl. 10(4) (2007), 799–804.10.7153/mia-10-73Search in Google Scholar

[16] Qi, F.—Chen, S.-X.—Chen, C.-P.: Monotonicity of ratio between the generalized logarithmic means, Math. Inequal. Appl. 10(3) (2007), 559–564.10.7153/mia-10-52Search in Google Scholar

[17] Qi, F.—Debnath, L.: Evaluation of a class of definite integrals, Internat. J. Math. Ed. Sci. Tech. 32(4) (2001), 629–633.10.1080/00207390116734Search in Google Scholar

[18] Qi, F.—Guo, B.-N.: A closed form for the Stirling polynomials in terms of the Stirling numbers, Tbilisi Math. J. 10(4) (2017), 153–158.10.1515/tmj-2017-0053Search in Google Scholar

[19] Qi, F.—Guo, B.-N.: A determinantal expression and a recurrence relation for the Euler polynomials, Adv. Appl. Math. Sci. 16(9) (2017), 297–309.10.20944/preprints201610.0034.v1Search in Google Scholar

[20] Qi, F.—Guo, B.-N.: A diagonal recurrence relation for the Stirling numbers of the first kind, Appl. Anal. Discrete Math. 12(1) (2018), 153–165.10.2298/AADM170405004QSearch in Google Scholar

[21] Qi, F.—Guo, B.-N.: Explicit and recursive formulas, integral representations, and properties of the large Schröder numbers, Kragujevac J. Math. 41(1) (2017), 121–141.10.5937/KgJMath1701121FSearch in Google Scholar

[22] Qi, F.—Guo, B.-N.: Expressing the generalized Fibonacci polynomials in terms of a tridiagonal determinant, Matematiche (Catania) 72(1) (2017), 167–175.10.20944/preprints201703.0208.v1Search in Google Scholar

[23] Qi, F.—Guo, B.-N.: Some determinantal expressions and recurrence relations of the Bernoulli polynomials, Mathematics 4(4) (2016), Art.ID 65, 11 pp.10.3390/math4040065Search in Google Scholar

[24] Qi, F.—Guo, B.-N.: Two nice determinantal expressions and a recurrence relation for the Apostol–Bernoulli polynomials, J. Indones. Math. Soc. (MIHMI) 23(1) (2017), 81–87.10.22342/jims.23.1.274.81-87Search in Google Scholar

[25] Qi, F.—Kızılateş, C.—Du, W.-S.: A closed formula for the Horadam polynomials in terms of a tridiagonal determinant, Symmetry 11(6) (2019), 8 pp.10.3390/sym11060782Search in Google Scholar

[26] Qi, F.—Lim, D.—Guo, B.-N.: Explicit formulas and identities for the Bell polynomials and a sequence of polynomials applied to differential equations, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(1) (2019), 1–9.10.1007/s13398-017-0427-2Search in Google Scholar

[27] Qi, F.—Lim, D.—Yao, Y.-H.: Notes on two kinds of special values for the Bell polynomials of the second kind, Miskolc Math. Notes 20(1) (2019), 465–474.10.18514/MMN.2019.2635Search in Google Scholar

[28] Qi, F.—Liu, A.-Q.: Alternative proofs of some formulas for two tridiagonal determinants, Acta Univ. Sapientiae Math. 10(2) (2018), 287–297.10.2478/ausm-2018-0022Search in Google Scholar

[29] Qi, F.—Mahmoud, M.—Shi, X.-T.—Liu, F.-F.: Some properties of the Catalan–Qi function related to the Catalan numbers, SpringerPlus 5 (2016), Art. ID 1126, 20 pp.10.1186/s40064-016-2793-1Search in Google Scholar PubMed PubMed Central

[30] Qi, F.—Niu, D.-W.—Guo, B.-N.: Some identities for a sequence of unnamed polynomials connected with the Bell polynomials, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 113(2) (2019), 557–567.10.1007/s13398-018-0494-zSearch in Google Scholar

[31] Qi, F.—Niu, D.-W.—Lim, D.—Guo, B.-N.: Closed formulas and identities for the Bell polynomials and falling factorials, Contrib. Discrete Math. 15(1) (2020), 163–174.10.55016/ojs/cdm.v15i1.68111Search in Google Scholar

[32] Qi, F.—Shi, X.-T.—Guo, B.-N.: Two explicit formulas of the Schröder numbers, Integers 16 (2016), Art. ID A23, 15 pp.Search in Google Scholar

[33] Qi, F.—Shi, X.-T.—Liu, F.-F.: Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers, Acta Univ. Sapientiae Math. 8(2) (2016), 282–297.10.1515/ausm-2016-0019Search in Google Scholar

[34] Qi, F.—Shi, X.-T.—Liu, F.-F.—Kruchinin, D. V.: Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput. 7(3) (2017), 857–871.10.11948/2017054Search in Google Scholar

[35] Qi, F.—Wang, J.-L.—Guo, B.-N.: A determinantal expression for the Fibonacci polynomials in terms of a tridiagonal determinant, Bull. Iranian Math. Soc. 45(6) (2019), 1821–1829.10.1007/s41980-019-00232-4Search in Google Scholar

[36] Qi, F.—Wang, J.-L.—Guo, B.-N.: A recovery of two determinantal representations for derangement numbers, Cogent Math. 3 (2016), Art. ID 1232878, 7 pp.10.1080/23311835.2016.1232878Search in Google Scholar

[37] Qi, F.—Wang, J.-L.—Guo, B.-N.: A representation for derangement numbers in terms of a tridiagonal determinant, Kragujevac J. Math. 42(1) (2018), 7–14.10.5937/KgJMath1801007FSearch in Google Scholar

[38] Qi, F.—Zhao, J.-L.: Some properties of the Bernoulli numbers of the second kind and their generating function, Bull. Korean Math. Soc. 55(6) (2018), 1909–1920.10.12691/tjant-6-2-1Search in Google Scholar

[39] Qi, F.—Zhao, J.-L.—Guo, B.-N.: Closed forms for derangement numbers in terms of the Hessenberg determinants, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 112(4) (2018), 933–944.10.1007/s13398-017-0401-zSearch in Google Scholar

[40] Quaintance, J.—Gould, H. W.: Combinatorial Identities for Stirling Numbers, the Unpublished Notes of H. W. Gould, with a foreword by George E. Andrews, World Scientific Publishing Co. Pte. Ltd., Singapore, 2016.10.1142/9821Search in Google Scholar

[41] Sprugnoli, R.: Riordan Array Proofs of Identities in Gould’s Book, University of Florence, Italy, 2006.Search in Google Scholar

[42] Tomovski, Ž.—Pogány, T. K.—Srivastava, H. M.: Laplace type integral expressions for a certain three-parameter family of generalized Mittag-Leffler functions with applications involving complete monotonicity, J. Franklin Inst. 351(12) (2014), 5437–5454.10.1016/j.jfranklin.2014.09.007Search in Google Scholar

[43] Wei, C.-F.—F. Qi: Several closed expressions for the Euler numbers, J. Inequal. Appl. 2015, Art. ID 219, 8 pp.10.1186/s13660-015-0738-9Search in Google Scholar

Received: 2019-10-19
Accepted: 2020-02-09
Published Online: 2020-12-10
Published in Print: 2020-12-16

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0445/html
Scroll to top button