Startseite Mathematik Quantitative approximation by Stancu-Durrmeyer-Choquet-Šipoš operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quantitative approximation by Stancu-Durrmeyer-Choquet-Šipoš operators

  • Sorin G. Gal EMAIL logo
Veröffentlicht/Copyright: 21. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper we present general quantitative estimates in terms of the modulus of continuity and of a K-functional, in approximation by the generalized multivariate Stancu-Durrmeyer-Choquet-Šipoš operators Mn,Γn,x(β,γ), with 0 ≤ βγ, written in terms of Choquet and Šipoš integrals with respect to a family of monotone and submodular set functions, Γn, x, on the standard d-dimensional simplex. If d = 1 and the Choquet integrals are taken with respect to some concrete possibility measures, the estimate in terms of the modulus of continuity is detailed. Examples improving the estimates given by the classical operators also are presented.

  1. (Communicated by Anatolij Dvurečenskij)

References

[1] Choquet, G.: Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1954), 131–295.10.5802/aif.53Suche in Google Scholar

[2] Denneberg, D.: Non-Additive Measure and Integral, Kluwer Acad. Publ., Dordrecht, 1994.10.1007/978-94-017-2434-0Suche in Google Scholar

[3] Dubois, D.—Prade, H.: Possibility Theory, Plenum Press, New York, 1988.10.1007/978-1-4684-5287-7Suche in Google Scholar

[4] Gal, S. G.: Approximation by Choquet integral operators, Ann. Mat. Pura Appl. 195 (2016), 881–896.10.1007/s10231-015-0495-xSuche in Google Scholar

[5] Gal, S. G.—Opris, B. D.: Uniform and pointwise convergence of Bernstein-Durrmeyer operators with respect to monotone and submodular set functions, J. Math. Anal. Appl. 424 (2015), 1374–1379.10.1016/j.jmaa.2014.12.012Suche in Google Scholar

[6] Gal, S. G.—Trifa, S.: Quantitative estimates in uniform and pointwise approximation by Bernstein-Durrmeyer-Choquet operators, Carpathian J. Math. 33 (2017), 49–58.10.37193/CJM.2017.01.06Suche in Google Scholar

[7] Gonska, H.—Kacsó D.—Rasa, I.: The genuine Bernstein-Durrmeyer operators revisited, Results Math. 62 (2012), 295–310.10.1007/s00025-012-0287-1Suche in Google Scholar

[8] Stancu, D. D.: On a generalization of the Bernstein polynomials (Romanian), Studia Univ. Babes-Bolyai Ser. Math.-Phys. 14 (1969), 31–45.Suche in Google Scholar

[9] Šipoš, J.: Integral with respect to a pre-measure, Math. Slovaca 29 (1979), 141–155.Suche in Google Scholar

[10] Šipoš, J.: Nonlinear integrals, Math. Slovaca 29 (1979), 257–270.Suche in Google Scholar

[11] Wang, Z.—Klir, G. J.: Generalized Measure Theory, Springer, New York, 2009.10.1007/978-0-387-76852-6Suche in Google Scholar

Received: 2018-02-27
Accepted: 2018-08-03
Published Online: 2019-05-21
Published in Print: 2019-06-26

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0252/html
Button zum nach oben scrollen