Startseite A topological duality for strong Boolean posets
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A topological duality for strong Boolean posets

  • Zhenzhu Yuan und Qingguo Li EMAIL logo
Veröffentlicht/Copyright: 21. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we define a new class of posets which are complemented and ideal-distributive, we call these posets strong Boolean. This definition is a generalization of Boolean lattices on posets, and is different from Boolean posets. We give a topology on the set of all prime Frink ideals in order to obtain the Stone’s topological representation for strong Boolean posets. A discussion of a duality between the categories of strong Boolean posets and BP-spaces is also presented.

  1. (Communicated by Anatolij Dvurečenskij)

Acknowledgement

We would like to express our deep gratitude to the referee for his/her invaluable comments which have improved the quality of this paper.

References

[1] Chajda, I.: Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25–34.Suche in Google Scholar

[2] Chajda, I.—Länger, H.—Paseka, J.: Uniquely complemented posets, Order 35 (2018), 421–431.10.1007/s11083-017-9440-5Suche in Google Scholar

[3] Davey, B. A.—Priestley, H. A.: Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002.10.1017/CBO9780511809088Suche in Google Scholar

[4] David, E.: Topological representation of posets, Algebra Universalis 30 (1993), 221–233.10.1007/BF01196093Suche in Google Scholar

[5] David, E.—Erné, M.: Ideal completion and stone representation of ideal-distributive ordered sets, Topol. Appl. 44 (1992), 95–113.10.1016/0166-8641(92)90083-CSuche in Google Scholar

[6] Erné, M.: Distributivgesetze und die Dedekind’sche Schnittvervollständigung, Abh. Braunschweig Wiss. Ges. 33 (1982), 117–145.Suche in Google Scholar

[7] Erné, M.: Prime and maximal ideals of partially ordered sets, Math. Slovaca 56 (2006), 1–22.Suche in Google Scholar

[8] Frink, O.: Ideals in partially ordered sets, Amer. Math. Monthly 61 (1954), 223–234.10.1080/00029890.1954.11988449Suche in Google Scholar

[9] González, L. J.—Jansana, R.: A topological duality for posets, Algebra Universalis 76 (2016), 455–478.10.1007/s00012-016-0389-9Suche in Google Scholar

[10] González, L. J.—Jansana, R.: A spectral-style duality for distributive posets, Order 35 (2018), 321–347.10.1007/s11083-017-9435-2Suche in Google Scholar

[11] Larmerová, J.—Rachůnek, I.: Translations of distributive and modular ordered sets, Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 27 (1988), 13–23.Suche in Google Scholar

[12] Niederle, J.: Boolean and distributive ordered sets: Characterization and representation by sets, Order 12 (1995), 189–210.10.1007/BF01108627Suche in Google Scholar

[13] Stone, M. H.: The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), 37–111.10.1090/S0002-9947-1936-1501865-8Suche in Google Scholar

Received: 2018-03-22
Accepted: 2018-08-03
Published Online: 2019-05-21
Published in Print: 2019-06-26

© 2019 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0242/html
Button zum nach oben scrollen