Home Mathematics Perfect 1-factorizations
Article
Licensed
Unlicensed Requires Authentication

Perfect 1-factorizations

  • Alexander Rosa EMAIL logo
Published/Copyright: May 21, 2019
Become an author with De Gruyter Brill

Abstract

Let G be a graph with vertex-set V = V(G) and edge-set E = E(G). A 1-factor of G (also called perfect matching) is a factor of G of degree 1, that is, a set of pairwise disjoint edges which partitions V. A 1-factorization of G is a partition of its edge-set E into 1-factors. For a graph G to have a 1-factor, |V(G)| must be even, and for a graph G to admit a 1-factorization, G must be regular of degree r, 1 ≤ r ≤ |V| − 1.

One can find in the literature at least two extensive surveys [69] and [89] and also a whole book [90] devoted to 1-factorizations of (mainly) complete graphs.

A 1-factorization of G is said to be perfect if the union of any two of its distinct 1-factors is a Hamiltonian cycle of G. An early survey on perfect 1-factorizations (abbreviated as P1F) of complete graphs is [83]. In the book [90] a whole chapter (Chapter 16) is devoted to perfect 1-factorizations of complete graphs.

It is the purpose of this article to present what is known to-date on P1Fs, not only of complete graphs but also of other regular graphs, primarily cubic graphs.

MSC 2010: Primary 05C70; 05B30
  1. (Communicated by Peter Horák)

Acknowledgement

Thanks to Peter Horák, Mariusz Meszka and Ian Wanless for many valuable comments, and to the referees for helpful comments and suggestions.

References

[1] Andersen, L. D.: Perfect and uniform 1-factorizations. In: Handbook of Combinatorial Designs (C. J. Colbourn, J. H. Dinitz, eds.), CRC Press, 2007, pp. 752–754.Search in Google Scholar

[2] Anderson, B. A.: Finite topologies and Hamiltonian paths, J. Combin. Theory 14 (1973), 87–93.10.1016/S0095-8956(73)80008-5Search in Google Scholar

[3] Anderson, B. A.: A class of starter-induced 1-factorizations. In: Graphs and Combinatorics, Lect. Notes in Math. 406, Springer-Verlag, 1974, pp. 180–185.10.1007/BFb0066440Search in Google Scholar

[4] Anderson, B. A.: A perfectly arranged Room square, Congr. Numer. 8 (1974), 141–150.Search in Google Scholar

[5] Anderson, B. A.: Sequencings and starters, Pacific J. Math. 64 (1976), 17–24.10.2140/pjm.1976.64.17Search in Google Scholar

[6] Anderson, B. A.: Some perfect 1-factorizations, Congr. Numer. 17 (1976), 79–91.Search in Google Scholar

[7] Anderson, B. A.: Symmetry groups of some perfect 1-factorizations of complete graphs, Discrete Math. 18 (1977), 227–234.10.1016/0012-365X(77)90126-1Search in Google Scholar

[8] Anderson, B. A.—Morse, D.: Some observations on starters, Congr. Numer. 10 (1974), 229–235.Search in Google Scholar

[9] Astromujoff, N.—Matamala, M.: A quantitative approach to perfect one-factorizations of complete bipartite graphs, Electron. J. Combin. 22 (2015), P1.72.10.37236/4122Search in Google Scholar

[10] Belcastro, S.-M.—Haas, R.: Triangle-free uniquely 3-edge colorable cubic graphs, Contrib. Discrete Math. 10 (2016), 39–44.Search in Google Scholar

[11] Bonvicini, S.—Mazzuoccolo, G.: Perfect one-factorizations of generalized Petersen graphs, Ars Combin. 99 (2011), 33–43.Search in Google Scholar

[12] Bryant, D.—Maenhaut, B. M.—Wanless, I. M.: New families of atomic Latin squares and perfect one-factorisations, J. Combin. Theory (A) 113, (2006), 608–624.10.1016/j.jcta.2005.05.003Search in Google Scholar

[13] Bryant, D.—Maenhaut, B. M.—Wanless, I. M.: A family of perfect factorizations of complete bipartite graphs J. Combin. Theory (A) 98 (2002), 328–342.10.1006/jcta.2001.3240Search in Google Scholar

[14] Cameron, P. J.: Parallelisms of Complete Designs, Cambridge Univ. Press, 1976.10.1017/CBO9780511662102Search in Google Scholar

[15] Castagna, F.—Prins, G.: Every generalized Petersen graph has a Tait coloring, Pacific J. Math 42 (1972), 53–58.10.2140/pjm.1972.40.53Search in Google Scholar

[16] Chitra, V.—Muthusamy, A.: A note on semi-perfect 1-factorization and Craft’s conjecture, Graph Theory Notes N. Y. 64 (2013), 58–62.Search in Google Scholar

[17] Colbourn, C. J.—Colbourn, M. J.: Combinatorial isomorphism problems involving 1-factorizations, Ars Combin. 9 (1980), 191–200.Search in Google Scholar

[18] Colbourn, C. J.—Rosa, A.: Triple Systems, Oxford Univ. Press, 1999.10.1093/oso/9780198535768.001.0001Search in Google Scholar

[19] Dinitz, J. H.: Room n-cubes of low order, J. Austral. Math. Soc. A 36 (1984), 237–252.10.1017/S1446788700024678Search in Google Scholar

[20] Dinitz, J. H.: Some perfect Room squares, J. Combin. Math. Combin. Comput. 2 (1987), 29–36.Search in Google Scholar

[21] Dinitz, J. H.: Starters. In: Handbook of Combinatorial Designs (C. J. Colbourn, J. H. Dinitz, eds.), CRC Press, 2007, pp. 622–628.Search in Google Scholar

[22] Dinitz, J. H.—Dukes, P.: On the structure of uniform one-factorizations from starters in finite fields, Finite Fields Appl. 12 (2006), 283–300.10.1016/j.ffa.2005.05.008Search in Google Scholar

[23] Dinitz, J. H.—Dukes, P.—Stinson, D. R.: Sequentially perfect and uniform one-factorizations of the complete graph, Electron. J. Combin. 12 (2005), 1–12.10.37236/1898Search in Google Scholar

[24] Dinitz, J. H.—Garnick, D. K.: There are 23 nonisomorphic perfect one-factorizations of K14, J. Combin. Des. 4 (1996), 1–4.10.1002/(SICI)1520-6610(1996)4:1<1::AID-JCD1>3.0.CO;2-JSearch in Google Scholar

[25] Dinitz, J. H.—Garnick, D. K.—McKay, B. D.: There are 526, 915, 620 nonisomorphic 1-factorizations of K12, J. Combin. Des. 2 (1994), 273–285.10.1002/jcd.3180020406Search in Google Scholar

[26] Dinitz, J. H.—Stinson, D. R.: Some new perfect one-factorizations from starters in finite fields, J. Graph Theory (1989), 405–415.10.1002/jgt.3190130404Search in Google Scholar

[27] Dinitz, J. H.—Wallis, W. D.: Trains : an invariant for one-factorizations, Ars Combin. 32 (1991), 161–180.Search in Google Scholar

[28] Dudeney, H. E.: Amusements in Mathematics, Nelson and Sons, 1917.Search in Google Scholar

[29] Duncan, D.—Ihrig, E.: Automorphism groups of 1-factorizations, Congr. Numer. 94 (1993), 89–97.Search in Google Scholar

[30] Duncan, D.—Ihrig, E.: The structure of symmetry groups of GK(2n, G), J. Combin. Des. 2 (1994), 341–349.10.1002/jcd.3180020507Search in Google Scholar

[31] Duncan, D.—Ihrig, E.: The structure of symmetry groups of almost perfect one-factorizations, Rocky Mountain J. Math. 30 (2000), 529–554.10.1216/rmjm/1022009279Search in Google Scholar

[32] Ehrenfeucht, A.—Faber, V.—Fajtlowicz, S.—Mycielski, J.: Representations of finite lattices as partition lattices on finite sets. In: Proc. Univ. of Houston Lattice Theory Conf., Houston, (1973), pp. 17–35.Search in Google Scholar

[33] Gelling, E. N.—Odeh, R. E.: On 1-factorizations of the complete graph and the relationship to round-robin schedules, Congr. Numer. 9 (1974), 213–221.Search in Google Scholar

[34] Gochev, V. S.: On k-semiperfect 1-factorizations of Qn and Craft’s conjecture, Graph Theory Notes N. Y. 58 (2010), 36–41.Search in Google Scholar

[35] Griggs, T. S.—Rosa, A.: An invariant for one-factorizations of the complete graph, Ars Combin. 42 (1996), 77–88.Search in Google Scholar

[36] Hanani, H.: On quadruple systems, Canad. J. Math. 12 (1960), 145–157.10.4153/CJM-1960-013-3Search in Google Scholar

[37] Hartman, A.—Rosa, A.: Cyclic one-factorizations of the complete graph, European J. Combin. 6 (1985), 45–48.10.1016/S0195-6698(85)80020-2Search in Google Scholar

[38] Herke, S.: Perfect 1-Factorisations of Circulant Graphs, Ph.D. Thesis, University of Queensland, 2013.10.37236/2264Search in Google Scholar

[39] Herke, S.: On the perfect 1-factorisation problem for circulant graphs of degree 4, Australas. J. Combin. 60 (2014), 79–108.Search in Google Scholar

[40] Herke, S.—Maenhaut, B.: Perfect 1-factorisations of circulants with small degree, Electron. J. Combin. 20(1) (2013), Paper 58, 13 pp.10.37236/2264Search in Google Scholar

[41] Herke, S.—Maenhaut, B.: Perfect 1-factorizations of a family of Cayley graphs, J. Combin. Des. 23 (2015), 369–399.10.1002/jcd.21399Search in Google Scholar

[42] Holyer, I.: The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981), 718–720.10.1137/0210055Search in Google Scholar

[43] Hoyte, R.: Perfect 1-Factorisations of Cubic Graphs, Honours project, University of Queensland, (2014).Search in Google Scholar

[44] Ihrig, E. C.: Symmetry groups related to the construction of perfect one factorizations of K2n, J. Combin. Theory (B) 40 (1986), 121–151.10.1016/0095-8956(86)90072-9Search in Google Scholar

[45] Ihrig, E. C.: Cyclic perfect one factorizations of K2n, Ann. Discrete Math. 34 (1987), 259–272.10.1016/S0304-0208(08)72892-5Search in Google Scholar

[46] Ihrig, E. C.: The structure of symmetry groups of perfect 1-factorizations of K2n, J. Combin. Theory (B) 47 (1989), 307–329.10.1016/0095-8956(89)90031-2Search in Google Scholar

[47] Ihrig, E. C.—Seah, E.—Stinson, D. R.: A perfect one-factorization of K50, J. Combin. Math. Combin. Comput. 1 (1987), 217–219.Search in Google Scholar

[48] Kaski, P.—Östergard, P. R. J.: One-factorizations of regular graphs of order 12, Electron. J. Combin. 12 (2005), 1–25.10.37236/1899Search in Google Scholar

[49] Kaski, P.—Östergard, P.R.J.: There are 1, 132, 835, 421, 602, 062, 347 nonisomorphic one-factorizations of K14, J. Combin. Des. 17 (2009), 147–159.10.1002/jcd.20188Search in Google Scholar

[50] Kim, J. H.—Wormald, N. C.: Random matchings which induce Hamilton cycles—Hamiltonian decompositions of random regular graphs, J. Combin. Theory (B) 81 (2001), 20–44.10.1006/jctb.2000.1991Search in Google Scholar

[51] Kirkman, T. P.: On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191–204.Search in Google Scholar

[52] Kobayashi, M.—Awoki, H.—Nakazaki, Y.—Nakamura, G.: A perfect one-factorization for K36, Graphs Combin. 5 (1989), 243–244.10.1007/BF01788677Search in Google Scholar

[53] Kobayashi, M.—Kiyasu-Zen’iti: Perfect one-factorizations of K1332and K6860, J. Combin. Theory (A) 51 (1989), 314–315.10.1016/0097-3165(89)90054-XSearch in Google Scholar

[54] Kobayashi, M.—Kiyasu-Zen’iti—Nakamura, G.: A solution to Dudeney’s round table problem for an even number of people, J. Combin. Theory (A) 63 (1993), 26–42.10.1016/0097-3165(93)90022-ZSearch in Google Scholar

[55] Kobayashi, M.—Nakamura, G.: On 4-semiregular 1-factorizations of complete graphs and complete bipartite graphs, Graphs Combin. 10 (1994), 53–59.10.1007/BF01202470Search in Google Scholar

[56] Korovina, N. P.: O nekotorykh klassakh sistem grupp par, Kombinatornyj analiz 3 (1974), 43–48.Search in Google Scholar

[57] Kotzig, A.: Poznámka k rozkladom konečných párnych pravidelných grafov na lineárne faktory, Čas. pěst. matem. 83 (1958), 348–354.10.21136/CPM.1958.108285Search in Google Scholar

[58] Kotzig, A.: Construction for Hamiltonian graphs of third degree, Čas. pěst. matem. 87 (1962), 148–168.10.21136/CPM.1962.117423Search in Google Scholar

[59] Kotzig, A.: Postrojenie Hamiľtonovskich grafov tretiej stepeni, Čas. pěst. matem. 87 (1962), 148–168.10.21136/CPM.1962.117423Search in Google Scholar

[60] Kotzig, A.: Hamilton graphs and Hamilton circuits. In: Theory of Graphs and its Applications, Proc. Sympos. Smolenice 1963, Nakl. ČSAV, Praha, 1964, pp. 63–82.Search in Google Scholar

[61] Kotzig, A.: Problem 20, Theory of Graphs and its Applications, Proc. Sympos. Smolenice 1963, Nakl. ČSAV, Praha, 1964, 162.Search in Google Scholar

[62] Kotzig, A.: Groupoids and partitions of complete graphs. In: Combinatorial Structures and their Applications, Proc. Internat. Conf. Calgary, 1969, Gordon and Breach, 1970, pp. 215–221.Search in Google Scholar

[63] Kotzig, A.—Labelle, J.: Strongly Hamiltonian graphs, Util. Math. 14 (1978), 99–116.Search in Google Scholar

[64] Kotzig, A.—Labelle, J.: Quelques problèmes ouverts concernant les graphes fortement hamiltoniens, Ann. Sc. Math. Québec 3 (1979), 95–106.Search in Google Scholar

[65] Královič, R.—Královič, R.: On semi-perfect 1-factorizations. Lecture Notes in Comput. Sci. 3499, Springer, Berlin, (2005), pp. 216–230.10.1007/11429647_18Search in Google Scholar

[66] Laufer, P. J.: On strongly Hamiltonian complete bipartite graphs, Ars Combin. 9 (1980), 43–46.Search in Google Scholar

[67] Maenhaut, B. M.—Wanless, I. M.: Atomic Latin squares of order eleven, J. Combin. Designs 12 (2004), 12–34.10.1002/jcd.10064Search in Google Scholar

[68] Mazzuoccolo, G.: Perfect one-factorizations of line-graphs and planar graphs, Australas. J. Combin. 41 (2008), 227–233.Search in Google Scholar

[69] Mendelsohn, E.—Rosa, A.: One-factorizations of the complete graph – a survey, J. Graph Theory 9 (1985), 43–65.10.1002/jgt.3190090104Search in Google Scholar

[70] Meszka, M.: k-cycle free one-factorizations of complete graphs, Electron. J. Combin. 16 (2009).10.37236/92Search in Google Scholar

[71] Meszka, M.—Rosa, A.: Perfect 1-factorizations of K16 with nontrivial automorphism group, J. Combin. Math. Combin. Comput. 47 (2003), 97–111.Search in Google Scholar

[72] Petrenyuk, A. J.: O Spektre Maksimaľnykh Soveršennykh Semejstv 1-faktorov v Polnykh Grafakh Malykh Poriadkov, Optimizacia i jejo priloženija, Kiev, 1997.Search in Google Scholar

[73] Petrenyuk, A. J.: Perelik Neizomorfnykh Doskonalykh 1-factorizaciy Poriadku 12 Rangu 4, Manuscript, Depon. in Ukr. NDB, 1999, 13 pp.Search in Google Scholar

[74] Petrenyuk, L. P.—Petrenyuk, A. J.: Perečislenie Soveršennykh 1-faktorizacii Kubičeskikh i Polnykh Grafov Poriadka 14, Kirovogr. Inst. Mašinostr., Kirovograd, 1982, 34 pp.Search in Google Scholar

[75] Petrenyuk, L. P.—Petrenyuk, A. J.: Intersection of perfect one-factorizations of complete graphs, Cybernetics 16 (1980), 6–9.10.1007/BF01099353Search in Google Scholar

[76] Pike, D. A.—Shalaby, N.: The use of Skolem sequences to generate perfect one-factorizations, Ars Combin. 59 (2001), 153–159.Search in Google Scholar

[77] Pike, D. A.—Shalaby, N.: Non-isomorphic perfect one-factorizations from Skolem sequences and starters, J. Combin. Math. Combin. Comput. 44 (2003), 23–32.Search in Google Scholar

[78] Reiss, M.: Ueber eine Steinersche combinatorische Aufgabe, welche im 45sten Bande dieses Journals, Seite 181, gestellt worden ist, J. reine angew. Math. 56 (1859), 326–344.10.1515/9783112368688-029Search in Google Scholar

[79] Robinson, R. M.: The structure of certain triple systems, Math. Comput. 29 (1975), 223–241.10.1090/S0025-5718-1975-0384566-XSearch in Google Scholar

[80] Robinson, R. M.—Wormald, N. C.: Numbers of cubic graphs, J. Graph Theory 7 (1983), 463–467.10.1002/jgt.3190070412Search in Google Scholar

[81] Rosa, A.—Stinson, D. R.: One-factorizations of regular graphs and Howell designs of small order, Util. Math. 29 (1986), 99–124.Search in Google Scholar

[82] Sarvate, D. G.: A note on strongly regular Hamiltonian equivalence of Kn and K2n−1,2n−1 and its generalization, J. Indian Acad. Math. 5 (1983), 65–67.Search in Google Scholar

[83] Seah, E.: Perfect one-factorizations of the complete graph – a survey, Bull. Inst. Combin. Appl. 1 (1991), 59–79.Search in Google Scholar

[84] Seah, E.—Stinson, D. R.: Some perfect one-factorizations of K14, Ann. Discrete Math. 34 (1987), 419–436.10.1016/S0304-0208(08)72908-6Search in Google Scholar

[85] Seah, E.—Stinson, D. R.: On the enumeration of one-factorizations of complete graphs containing prescribed automorphism groups, Math. Comput. 50 (1988), 607–618.10.1090/S0025-5718-1988-0929557-1Search in Google Scholar

[86] Seah, E.—Stinson, D. R.: A perfect one-factorization for K36, Discrete Math. 70 (1988), 199–202.10.1016/0012-365X(88)90093-3Search in Google Scholar

[87] Seah, E.—Stinson, D. R.: A perfect one-factorization for K40, Congr. Numer. 68 (1989), 211–214.Search in Google Scholar

[88] Wagner, D. G.: On the perfect one-factorization conjecture, Discrete Math. 104 (1992), 211–215.10.1016/0012-365X(92)90337-FSearch in Google Scholar

[89] Wallis, W. D.: One-factorizations of complete graphs. In: Contemporary Design Theory. A Collection of Surveys, Wiley, 1992, pp. 593–631.10.1017/S1446788700014178Search in Google Scholar

[90] Wallis, W. D.: One-Factorizations, Kluwer Academic, Dordrecht, 1997.10.1007/978-1-4757-2564-3Search in Google Scholar

[91] Wanless, I. M.: Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles, Electron. J. Combin. 6 (1999), R9, 16 pp.10.37236/1441Search in Google Scholar

[92] Wanless, I. M.: Cycle switches in latin squares, Graphs Combin. 20 (2004), 545–570.10.1007/s00373-004-0567-7Search in Google Scholar

[93] Wanless, I. M.: Atomic latin squares based on cyclotomic orthomorphisms, Electron. J. Combin. 12 (2005), R22.10.37236/1919Search in Google Scholar

[94] Wanless, I. M.—Ihrig, E. C.: Symmetries that latin squares inherit from 1-factorizations, J. Combin. Des. 13 (2005), 157–172.10.1002/jcd.20045Search in Google Scholar

[95] Wolfe, A.: A perfect one-factorization of K52, J. Combin. Des. 17 (2009), 190–196.10.1002/jcd.20194Search in Google Scholar

[96] Wormald, N. C.: Models of random regular graphs. In: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 267, Cambridge Univ. Press., Cambridge, 1999, pp. 239–298.10.1017/CBO9780511721335.010Search in Google Scholar

[97] Zhang, J. Z.: Some results on perfect 1-factorizations of K2n, Dianzi Keji Daxue Xuebao 21 (1992), 434–436.Search in Google Scholar

Received: 2018-05-10
Accepted: 2018-09-19
Published Online: 2019-05-21
Published in Print: 2019-06-26

© 2019 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0241/html
Scroll to top button