Abstract
Let G be a graph with vertex-set V = V(G) and edge-set E = E(G). A 1-factor of G (also called perfect matching) is a factor of G of degree 1, that is, a set of pairwise disjoint edges which partitions V. A 1-factorization of G is a partition of its edge-set E into 1-factors. For a graph G to have a 1-factor, |V(G)| must be even, and for a graph G to admit a 1-factorization, G must be regular of degree r, 1 ≤ r ≤ |V| − 1.
One can find in the literature at least two extensive surveys [69] and [89] and also a whole book [90] devoted to 1-factorizations of (mainly) complete graphs.
A 1-factorization of G is said to be perfect if the union of any two of its distinct 1-factors is a Hamiltonian cycle of G. An early survey on perfect 1-factorizations (abbreviated as P1F) of complete graphs is [83]. In the book [90] a whole chapter (Chapter 16) is devoted to perfect 1-factorizations of complete graphs.
It is the purpose of this article to present what is known to-date on P1Fs, not only of complete graphs but also of other regular graphs, primarily cubic graphs.
(Communicated by Peter Horák)
Acknowledgement
Thanks to Peter Horák, Mariusz Meszka and Ian Wanless for many valuable comments, and to the referees for helpful comments and suggestions.
References
[1] Andersen, L. D.: Perfect and uniform 1-factorizations. In: Handbook of Combinatorial Designs (C. J. Colbourn, J. H. Dinitz, eds.), CRC Press, 2007, pp. 752–754.Search in Google Scholar
[2] Anderson, B. A.: Finite topologies and Hamiltonian paths, J. Combin. Theory 14 (1973), 87–93.10.1016/S0095-8956(73)80008-5Search in Google Scholar
[3] Anderson, B. A.: A class of starter-induced 1-factorizations. In: Graphs and Combinatorics, Lect. Notes in Math. 406, Springer-Verlag, 1974, pp. 180–185.10.1007/BFb0066440Search in Google Scholar
[4] Anderson, B. A.: A perfectly arranged Room square, Congr. Numer. 8 (1974), 141–150.Search in Google Scholar
[5] Anderson, B. A.: Sequencings and starters, Pacific J. Math. 64 (1976), 17–24.10.2140/pjm.1976.64.17Search in Google Scholar
[6] Anderson, B. A.: Some perfect 1-factorizations, Congr. Numer. 17 (1976), 79–91.Search in Google Scholar
[7] Anderson, B. A.: Symmetry groups of some perfect 1-factorizations of complete graphs, Discrete Math. 18 (1977), 227–234.10.1016/0012-365X(77)90126-1Search in Google Scholar
[8] Anderson, B. A.—Morse, D.: Some observations on starters, Congr. Numer. 10 (1974), 229–235.Search in Google Scholar
[9] Astromujoff, N.—Matamala, M.: A quantitative approach to perfect one-factorizations of complete bipartite graphs, Electron. J. Combin. 22 (2015), P1.72.10.37236/4122Search in Google Scholar
[10] Belcastro, S.-M.—Haas, R.: Triangle-free uniquely 3-edge colorable cubic graphs, Contrib. Discrete Math. 10 (2016), 39–44.Search in Google Scholar
[11] Bonvicini, S.—Mazzuoccolo, G.: Perfect one-factorizations of generalized Petersen graphs, Ars Combin. 99 (2011), 33–43.Search in Google Scholar
[12] Bryant, D.—Maenhaut, B. M.—Wanless, I. M.: New families of atomic Latin squares and perfect one-factorisations, J. Combin. Theory (A) 113, (2006), 608–624.10.1016/j.jcta.2005.05.003Search in Google Scholar
[13] Bryant, D.—Maenhaut, B. M.—Wanless, I. M.: A family of perfect factorizations of complete bipartite graphs J. Combin. Theory (A) 98 (2002), 328–342.10.1006/jcta.2001.3240Search in Google Scholar
[14] Cameron, P. J.: Parallelisms of Complete Designs, Cambridge Univ. Press, 1976.10.1017/CBO9780511662102Search in Google Scholar
[15] Castagna, F.—Prins, G.: Every generalized Petersen graph has a Tait coloring, Pacific J. Math 42 (1972), 53–58.10.2140/pjm.1972.40.53Search in Google Scholar
[16] Chitra, V.—Muthusamy, A.: A note on semi-perfect 1-factorization and Craft’s conjecture, Graph Theory Notes N. Y. 64 (2013), 58–62.Search in Google Scholar
[17] Colbourn, C. J.—Colbourn, M. J.: Combinatorial isomorphism problems involving 1-factorizations, Ars Combin. 9 (1980), 191–200.Search in Google Scholar
[18] Colbourn, C. J.—Rosa, A.: Triple Systems, Oxford Univ. Press, 1999.10.1093/oso/9780198535768.001.0001Search in Google Scholar
[19] Dinitz, J. H.: Room n-cubes of low order, J. Austral. Math. Soc. A 36 (1984), 237–252.10.1017/S1446788700024678Search in Google Scholar
[20] Dinitz, J. H.: Some perfect Room squares, J. Combin. Math. Combin. Comput. 2 (1987), 29–36.Search in Google Scholar
[21] Dinitz, J. H.: Starters. In: Handbook of Combinatorial Designs (C. J. Colbourn, J. H. Dinitz, eds.), CRC Press, 2007, pp. 622–628.Search in Google Scholar
[22] Dinitz, J. H.—Dukes, P.: On the structure of uniform one-factorizations from starters in finite fields, Finite Fields Appl. 12 (2006), 283–300.10.1016/j.ffa.2005.05.008Search in Google Scholar
[23] Dinitz, J. H.—Dukes, P.—Stinson, D. R.: Sequentially perfect and uniform one-factorizations of the complete graph, Electron. J. Combin. 12 (2005), 1–12.10.37236/1898Search in Google Scholar
[24] Dinitz, J. H.—Garnick, D. K.: There are 23 nonisomorphic perfect one-factorizations of K14, J. Combin. Des. 4 (1996), 1–4.10.1002/(SICI)1520-6610(1996)4:1<1::AID-JCD1>3.0.CO;2-JSearch in Google Scholar
[25] Dinitz, J. H.—Garnick, D. K.—McKay, B. D.: There are 526, 915, 620 nonisomorphic 1-factorizations of K12, J. Combin. Des. 2 (1994), 273–285.10.1002/jcd.3180020406Search in Google Scholar
[26] Dinitz, J. H.—Stinson, D. R.: Some new perfect one-factorizations from starters in finite fields, J. Graph Theory (1989), 405–415.10.1002/jgt.3190130404Search in Google Scholar
[27] Dinitz, J. H.—Wallis, W. D.: Trains : an invariant for one-factorizations, Ars Combin. 32 (1991), 161–180.Search in Google Scholar
[28] Dudeney, H. E.: Amusements in Mathematics, Nelson and Sons, 1917.Search in Google Scholar
[29] Duncan, D.—Ihrig, E.: Automorphism groups of 1-factorizations, Congr. Numer. 94 (1993), 89–97.Search in Google Scholar
[30] Duncan, D.—Ihrig, E.: The structure of symmetry groups of GK(2n, G), J. Combin. Des. 2 (1994), 341–349.10.1002/jcd.3180020507Search in Google Scholar
[31] Duncan, D.—Ihrig, E.: The structure of symmetry groups of almost perfect one-factorizations, Rocky Mountain J. Math. 30 (2000), 529–554.10.1216/rmjm/1022009279Search in Google Scholar
[32] Ehrenfeucht, A.—Faber, V.—Fajtlowicz, S.—Mycielski, J.: Representations of finite lattices as partition lattices on finite sets. In: Proc. Univ. of Houston Lattice Theory Conf., Houston, (1973), pp. 17–35.Search in Google Scholar
[33] Gelling, E. N.—Odeh, R. E.: On 1-factorizations of the complete graph and the relationship to round-robin schedules, Congr. Numer. 9 (1974), 213–221.Search in Google Scholar
[34] Gochev, V. S.: On k-semiperfect 1-factorizations of Qn and Craft’s conjecture, Graph Theory Notes N. Y. 58 (2010), 36–41.Search in Google Scholar
[35] Griggs, T. S.—Rosa, A.: An invariant for one-factorizations of the complete graph, Ars Combin. 42 (1996), 77–88.Search in Google Scholar
[36] Hanani, H.: On quadruple systems, Canad. J. Math. 12 (1960), 145–157.10.4153/CJM-1960-013-3Search in Google Scholar
[37] Hartman, A.—Rosa, A.: Cyclic one-factorizations of the complete graph, European J. Combin. 6 (1985), 45–48.10.1016/S0195-6698(85)80020-2Search in Google Scholar
[38] Herke, S.: Perfect 1-Factorisations of Circulant Graphs, Ph.D. Thesis, University of Queensland, 2013.10.37236/2264Search in Google Scholar
[39] Herke, S.: On the perfect 1-factorisation problem for circulant graphs of degree 4, Australas. J. Combin. 60 (2014), 79–108.Search in Google Scholar
[40] Herke, S.—Maenhaut, B.: Perfect 1-factorisations of circulants with small degree, Electron. J. Combin. 20(1) (2013), Paper 58, 13 pp.10.37236/2264Search in Google Scholar
[41] Herke, S.—Maenhaut, B.: Perfect 1-factorizations of a family of Cayley graphs, J. Combin. Des. 23 (2015), 369–399.10.1002/jcd.21399Search in Google Scholar
[42] Holyer, I.: The NP-completeness of edge-coloring, SIAM J. Comput. 10 (1981), 718–720.10.1137/0210055Search in Google Scholar
[43] Hoyte, R.: Perfect 1-Factorisations of Cubic Graphs, Honours project, University of Queensland, (2014).Search in Google Scholar
[44] Ihrig, E. C.: Symmetry groups related to the construction of perfect one factorizations of K2n, J. Combin. Theory (B) 40 (1986), 121–151.10.1016/0095-8956(86)90072-9Search in Google Scholar
[45] Ihrig, E. C.: Cyclic perfect one factorizations of K2n, Ann. Discrete Math. 34 (1987), 259–272.10.1016/S0304-0208(08)72892-5Search in Google Scholar
[46] Ihrig, E. C.: The structure of symmetry groups of perfect 1-factorizations of K2n, J. Combin. Theory (B) 47 (1989), 307–329.10.1016/0095-8956(89)90031-2Search in Google Scholar
[47] Ihrig, E. C.—Seah, E.—Stinson, D. R.: A perfect one-factorization of K50, J. Combin. Math. Combin. Comput. 1 (1987), 217–219.Search in Google Scholar
[48] Kaski, P.—Östergard, P. R. J.: One-factorizations of regular graphs of order 12, Electron. J. Combin. 12 (2005), 1–25.10.37236/1899Search in Google Scholar
[49] Kaski, P.—Östergard, P.R.J.: There are 1, 132, 835, 421, 602, 062, 347 nonisomorphic one-factorizations of K14, J. Combin. Des. 17 (2009), 147–159.10.1002/jcd.20188Search in Google Scholar
[50] Kim, J. H.—Wormald, N. C.: Random matchings which induce Hamilton cycles—Hamiltonian decompositions of random regular graphs, J. Combin. Theory (B) 81 (2001), 20–44.10.1006/jctb.2000.1991Search in Google Scholar
[51] Kirkman, T. P.: On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191–204.Search in Google Scholar
[52] Kobayashi, M.—Awoki, H.—Nakazaki, Y.—Nakamura, G.: A perfect one-factorization for K36, Graphs Combin. 5 (1989), 243–244.10.1007/BF01788677Search in Google Scholar
[53] Kobayashi, M.—Kiyasu-Zen’iti: Perfect one-factorizations of K1332and K6860, J. Combin. Theory (A) 51 (1989), 314–315.10.1016/0097-3165(89)90054-XSearch in Google Scholar
[54] Kobayashi, M.—Kiyasu-Zen’iti—Nakamura, G.: A solution to Dudeney’s round table problem for an even number of people, J. Combin. Theory (A) 63 (1993), 26–42.10.1016/0097-3165(93)90022-ZSearch in Google Scholar
[55] Kobayashi, M.—Nakamura, G.: On 4-semiregular 1-factorizations of complete graphs and complete bipartite graphs, Graphs Combin. 10 (1994), 53–59.10.1007/BF01202470Search in Google Scholar
[56] Korovina, N. P.: O nekotorykh klassakh sistem grupp par, Kombinatornyj analiz 3 (1974), 43–48.Search in Google Scholar
[57] Kotzig, A.: Poznámka k rozkladom konečných párnych pravidelných grafov na lineárne faktory, Čas. pěst. matem. 83 (1958), 348–354.10.21136/CPM.1958.108285Search in Google Scholar
[58] Kotzig, A.: Construction for Hamiltonian graphs of third degree, Čas. pěst. matem. 87 (1962), 148–168.10.21136/CPM.1962.117423Search in Google Scholar
[59] Kotzig, A.: Postrojenie Hamiľtonovskich grafov tretiej stepeni, Čas. pěst. matem. 87 (1962), 148–168.10.21136/CPM.1962.117423Search in Google Scholar
[60] Kotzig, A.: Hamilton graphs and Hamilton circuits. In: Theory of Graphs and its Applications, Proc. Sympos. Smolenice 1963, Nakl. ČSAV, Praha, 1964, pp. 63–82.Search in Google Scholar
[61] Kotzig, A.: Problem 20, Theory of Graphs and its Applications, Proc. Sympos. Smolenice 1963, Nakl. ČSAV, Praha, 1964, 162.Search in Google Scholar
[62] Kotzig, A.: Groupoids and partitions of complete graphs. In: Combinatorial Structures and their Applications, Proc. Internat. Conf. Calgary, 1969, Gordon and Breach, 1970, pp. 215–221.Search in Google Scholar
[63] Kotzig, A.—Labelle, J.: Strongly Hamiltonian graphs, Util. Math. 14 (1978), 99–116.Search in Google Scholar
[64] Kotzig, A.—Labelle, J.: Quelques problèmes ouverts concernant les graphes fortement hamiltoniens, Ann. Sc. Math. Québec 3 (1979), 95–106.Search in Google Scholar
[65] Královič, R.—Královič, R.: On semi-perfect 1-factorizations. Lecture Notes in Comput. Sci. 3499, Springer, Berlin, (2005), pp. 216–230.10.1007/11429647_18Search in Google Scholar
[66] Laufer, P. J.: On strongly Hamiltonian complete bipartite graphs, Ars Combin. 9 (1980), 43–46.Search in Google Scholar
[67] Maenhaut, B. M.—Wanless, I. M.: Atomic Latin squares of order eleven, J. Combin. Designs 12 (2004), 12–34.10.1002/jcd.10064Search in Google Scholar
[68] Mazzuoccolo, G.: Perfect one-factorizations of line-graphs and planar graphs, Australas. J. Combin. 41 (2008), 227–233.Search in Google Scholar
[69] Mendelsohn, E.—Rosa, A.: One-factorizations of the complete graph – a survey, J. Graph Theory 9 (1985), 43–65.10.1002/jgt.3190090104Search in Google Scholar
[70] Meszka, M.: k-cycle free one-factorizations of complete graphs, Electron. J. Combin. 16 (2009).10.37236/92Search in Google Scholar
[71] Meszka, M.—Rosa, A.: Perfect 1-factorizations of K16 with nontrivial automorphism group, J. Combin. Math. Combin. Comput. 47 (2003), 97–111.Search in Google Scholar
[72] Petrenyuk, A. J.: O Spektre Maksimaľnykh Soveršennykh Semejstv 1-faktorov v Polnykh Grafakh Malykh Poriadkov, Optimizacia i jejo priloženija, Kiev, 1997.Search in Google Scholar
[73] Petrenyuk, A. J.: Perelik Neizomorfnykh Doskonalykh 1-factorizaciy Poriadku 12 Rangu 4, Manuscript, Depon. in Ukr. NDB, 1999, 13 pp.Search in Google Scholar
[74] Petrenyuk, L. P.—Petrenyuk, A. J.: Perečislenie Soveršennykh 1-faktorizacii Kubičeskikh i Polnykh Grafov Poriadka 14, Kirovogr. Inst. Mašinostr., Kirovograd, 1982, 34 pp.Search in Google Scholar
[75] Petrenyuk, L. P.—Petrenyuk, A. J.: Intersection of perfect one-factorizations of complete graphs, Cybernetics 16 (1980), 6–9.10.1007/BF01099353Search in Google Scholar
[76] Pike, D. A.—Shalaby, N.: The use of Skolem sequences to generate perfect one-factorizations, Ars Combin. 59 (2001), 153–159.Search in Google Scholar
[77] Pike, D. A.—Shalaby, N.: Non-isomorphic perfect one-factorizations from Skolem sequences and starters, J. Combin. Math. Combin. Comput. 44 (2003), 23–32.Search in Google Scholar
[78] Reiss, M.: Ueber eine Steinersche combinatorische Aufgabe, welche im 45sten Bande dieses Journals, Seite 181, gestellt worden ist, J. reine angew. Math. 56 (1859), 326–344.10.1515/9783112368688-029Search in Google Scholar
[79] Robinson, R. M.: The structure of certain triple systems, Math. Comput. 29 (1975), 223–241.10.1090/S0025-5718-1975-0384566-XSearch in Google Scholar
[80] Robinson, R. M.—Wormald, N. C.: Numbers of cubic graphs, J. Graph Theory 7 (1983), 463–467.10.1002/jgt.3190070412Search in Google Scholar
[81] Rosa, A.—Stinson, D. R.: One-factorizations of regular graphs and Howell designs of small order, Util. Math. 29 (1986), 99–124.Search in Google Scholar
[82] Sarvate, D. G.: A note on strongly regular Hamiltonian equivalence of Kn and K2n−1,2n−1 and its generalization, J. Indian Acad. Math. 5 (1983), 65–67.Search in Google Scholar
[83] Seah, E.: Perfect one-factorizations of the complete graph – a survey, Bull. Inst. Combin. Appl. 1 (1991), 59–79.Search in Google Scholar
[84] Seah, E.—Stinson, D. R.: Some perfect one-factorizations of K14, Ann. Discrete Math. 34 (1987), 419–436.10.1016/S0304-0208(08)72908-6Search in Google Scholar
[85] Seah, E.—Stinson, D. R.: On the enumeration of one-factorizations of complete graphs containing prescribed automorphism groups, Math. Comput. 50 (1988), 607–618.10.1090/S0025-5718-1988-0929557-1Search in Google Scholar
[86] Seah, E.—Stinson, D. R.: A perfect one-factorization for K36, Discrete Math. 70 (1988), 199–202.10.1016/0012-365X(88)90093-3Search in Google Scholar
[87] Seah, E.—Stinson, D. R.: A perfect one-factorization for K40, Congr. Numer. 68 (1989), 211–214.Search in Google Scholar
[88] Wagner, D. G.: On the perfect one-factorization conjecture, Discrete Math. 104 (1992), 211–215.10.1016/0012-365X(92)90337-FSearch in Google Scholar
[89] Wallis, W. D.: One-factorizations of complete graphs. In: Contemporary Design Theory. A Collection of Surveys, Wiley, 1992, pp. 593–631.10.1017/S1446788700014178Search in Google Scholar
[90] Wallis, W. D.: One-Factorizations, Kluwer Academic, Dordrecht, 1997.10.1007/978-1-4757-2564-3Search in Google Scholar
[91] Wanless, I. M.: Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles, Electron. J. Combin. 6 (1999), R9, 16 pp.10.37236/1441Search in Google Scholar
[92] Wanless, I. M.: Cycle switches in latin squares, Graphs Combin. 20 (2004), 545–570.10.1007/s00373-004-0567-7Search in Google Scholar
[93] Wanless, I. M.: Atomic latin squares based on cyclotomic orthomorphisms, Electron. J. Combin. 12 (2005), R22.10.37236/1919Search in Google Scholar
[94] Wanless, I. M.—Ihrig, E. C.: Symmetries that latin squares inherit from 1-factorizations, J. Combin. Des. 13 (2005), 157–172.10.1002/jcd.20045Search in Google Scholar
[95] Wolfe, A.: A perfect one-factorization of K52, J. Combin. Des. 17 (2009), 190–196.10.1002/jcd.20194Search in Google Scholar
[96] Wormald, N. C.: Models of random regular graphs. In: Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 267, Cambridge Univ. Press., Cambridge, 1999, pp. 239–298.10.1017/CBO9780511721335.010Search in Google Scholar
[97] Zhang, J. Z.: Some results on perfect 1-factorizations of K2n, Dianzi Keji Daxue Xuebao 21 (1992), 434–436.Search in Google Scholar
© 2019 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Regular papers
- The life jubilee of Prof. RNDr. Sylvia Pulmannová, DrSc.
- Perfect 1-factorizations
- A topological duality for strong Boolean posets
- On the Diophantine equations x2 + 2α 3β 19γ = yn and x2 + 2α 3β 13γ = yn
- Tribonacci numbers and primes of the form p = x2 + 11y2
- Basic semirings
- A conjecture for varieties of completely regular semigroups
- Uniqueness of meromorphic function with its shift operator under the purview of two or three shared sets
- Differential subordination results for Mittag-Leffler type functions with bounded turning property
- Mittag-Leffler stability for non-instantaneous impulsive Caputo fractional differential equations with delays
- Asymptotically periodic behavior of solutions of fractional evolution equations of order 1 < α < 2
- On the polynomial entropy for morse gradient systems
- Quantitative approximation by Stancu-Durrmeyer-Choquet-Šipoš operators
- A note on non-linear ∗-Jordan derivations on ∗-algebras
- Disjoint hypercyclic weighted translations on locally compact hausdorff spaces
- Some new results on real hypersurfaces with generalized Tanaka-Webster connection
- Relative topological properties of hyperspaces
- Cohomology of torus manifold bundles
- The Menger and projective Menger properties of function spaces with the set-open topology
- Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications
Articles in the same Issue
- Regular papers
- The life jubilee of Prof. RNDr. Sylvia Pulmannová, DrSc.
- Perfect 1-factorizations
- A topological duality for strong Boolean posets
- On the Diophantine equations x2 + 2α 3β 19γ = yn and x2 + 2α 3β 13γ = yn
- Tribonacci numbers and primes of the form p = x2 + 11y2
- Basic semirings
- A conjecture for varieties of completely regular semigroups
- Uniqueness of meromorphic function with its shift operator under the purview of two or three shared sets
- Differential subordination results for Mittag-Leffler type functions with bounded turning property
- Mittag-Leffler stability for non-instantaneous impulsive Caputo fractional differential equations with delays
- Asymptotically periodic behavior of solutions of fractional evolution equations of order 1 < α < 2
- On the polynomial entropy for morse gradient systems
- Quantitative approximation by Stancu-Durrmeyer-Choquet-Šipoš operators
- A note on non-linear ∗-Jordan derivations on ∗-algebras
- Disjoint hypercyclic weighted translations on locally compact hausdorff spaces
- Some new results on real hypersurfaces with generalized Tanaka-Webster connection
- Relative topological properties of hyperspaces
- Cohomology of torus manifold bundles
- The Menger and projective Menger properties of function spaces with the set-open topology
- Asymptotic behavior of the record values in a stationary Gaussian sequence, with applications